Title
Hint Use CTRL+F to search this
list.
|
Size |
Aanlysis on Boston Housing Data. |
63014 |
AAPL data |
1766 |
AAPL DATA |
614145 |
aapl sg 1 year |
1766 |
AAU VAP Trimodal People Segmentation Dataset |
1263885402 |
Abalone |
191873 |
Abalone Dataset |
196125 |
AbaloneHotEncoded |
425308 |
abbpp0 |
14291428 |
abcdefg |
1635880 |
abcdfe |
24064 |
abchelloword |
6 |
Abe_Shinzo_tweets |
321175 |
About 60k Organization Information |
7664044 |
Abseenteeism |
929911 |
Absenteeism Dataset |
929911 |
Academic Research from Indian Universities |
13163130 |
Academic Scores for NCAA Athletic Programs |
1835179 |
ACB 1994-2016 Spanish Basketball League Results |
25090048 |
Accidents in India |
203003 |
Accounting _Journals |
1927815 |
ACLED African Conflicts, 1997-2017 |
62166877 |
ACLED Asian Conflicts, 2015-2017 |
13625003 |
Acorn Study: London Smart Meters Block_3 Only |
39024425 |
ACS 2013 Wages |
57429033 |
ACS Homes Year Built |
30313188 |
ACS Shapefiles 2014 |
63223841 |
Active Satellites in Orbit Around Earth |
344472 |
Active Volcanoes in the Philippines |
1631 |
activity_train |
12063966 |
Acuweather data |
2650189 |
add2test |
14610163 |
added dataset sf dfsf fdf fds fdfs edf |
4593885 |
added el pais tweets |
18548925 |
Adding the sample submission to the RAOP |
18675 |
Additional info for leukemia gene expression data |
14753124 |
Additional Processed file churn prediction |
871920936 |
Adelaide City Council Parking Expirations |
7737141 |
adgjløøktg |
879 |
Adience Benchmark Gender And Age Classification |
1322949093 |
adj_close of 2 stocks in 2017 |
8325 |
Adjective Counts in the Works of Edgar Allan Poe |
257002 |
ADLCSV |
54087 |
Administrative divisions of Moscow |
698130 |
Admission |
3775 |
Admob data set |
20341 |
ads click |
492005809 |
Ads from context advertising |
141015387 |
Ads_dataset |
210050 |
ADS-16 Computational Advertising Dataset |
790380560 |
adult census |
478855 |
Adult Census Income |
4104734 |
Adult Census Income with AI |
19672538 |
Adult Data Set |
5720607 |
Adult income dataset |
5326368 |
Adults |
479710 |
adults |
3844216 |
Adverse Food Events |
19721957 |
Adverse Pharmaceuticals Events |
4737961793 |
Advertisement |
107424 |
Advertising |
107424 |
Advertising |
107424 |
Advertising |
107424 |
Advertising and Predict Sales |
4756 |
Advertising and Sales |
4756 |
Advertising Data |
5166 |
Advertising_Dummy |
107424 |
Ae. aegypti and Ae. albopictus occurrences |
3406779 |
Aegis Dataset |
221079 |
Aerial Bombing Operations in World War II |
28483239 |
Aeropress World Championship 2016 Recipe Data |
4004 |
Aerosol ozone |
202743 |
African bees dataset |
628443 |
Ag Stuff |
5293 |
ag_news |
11786319 |
ag_news_csvs |
11798244 |
ageGroupedCsv |
3565 |
aggensemble |
17112439 |
aggr dataset |
70589873 |
aggr dataset |
70569969 |
Agora Market Data JSONified (2014-2015) |
5868967 |
Agricultural Survey of African Farm Households |
37921937 |
Agricuture Crops Production In india |
104996 |
AI-Challenger-Scene-Classification Dataset |
4417181869 |
AI-Simulated Games of Machi Koro |
108536286 |
AI2 Science Questions |
60617764 |
AIC Logistic Model |
10576811 |
Air Passengers |
1746 |
Air pollutants measured in Seoul |
281689 |
Air Quality Annual Summary |
994187783 |
Air quality data from extensive network of sensors |
8530737 |
Air quality in northern Taiwan |
18765395 |
air_store_info_mod |
83501 |
Air-Quality |
751049 |
Airbag and other factors on Accident Fatalities |
2839783 |
Airbnb dataset of barcelona city |
3017718 |
Airbnb from insiderairbnb |
3337704 |
Airbnb Property Data from Texas |
9350671 |
Aircraft Accidents from 1908-2009 |
533951 |
Aircraft Wildlife Strikes, 1990-2015 |
36443102 |
Airline Database |
322026 |
Airline Delay 2007 July Sample |
61687929 |
Airline Delay Analysis |
589214 |
Airline Fleets |
102267 |
airline safety |
2265 |
AirlineAirport |
24763 |
Airlines |
102218 |
Airlines Delay |
250323223 |
Airlines Tweets Sentiments |
160763 |
AirPassenger |
1746 |
AirPassengers |
1746 |
AirPassengers |
1746 |
Airplane Crashes Since 1908 |
1595468 |
Airport coordinates of flights - India |
17738 |
Airport of next generation |
923087 |
AirportList |
88020 |
Airports, Train Stations, and Ferry Terminals |
1467576 |
AirQuality |
785065 |
airquality.csv |
3715 |
aisles.csv |
2603 |
Alaska Airport Data |
1076518 |
Alc consumption and higher education |
113855 |
alc_notitles |
954 |
Alcohol and Drug Consumption of German Teens |
14139 |
Alexa Skill Database |
368819 |
Alexa Top 1 Million Sites |
10022849 |
AlexNet |
226826326 |
Algerian provinces by population |
1485 |
algo_autre |
16169679 |
Alice files |
59110781 |
Alice In Wonderland GutenbergProject |
173595 |
Alien PNG |
3830 |
AliKAbeeel |
66 |
All About Data Science |
813445 |
All hospitals from webometrics |
780525 |
All India Health Centres Directory |
20967450 |
All Lending Club loan data |
370662409 |
All Model Vehicles Years (1984 2017) |
16007284 |
All Perish |
3262 |
All Shark Tank (US) pitches & deals |
145852 |
All the news |
669640768 |
All UK Active Companies By SIC And Geolocated |
51931080 |
All UK Active Company Names |
45000051 |
All-Trans House Price Indx by Metro Area 2007 2015 |
7933 |
allCSVfiles |
108755440 |
Allen-Unger Global Commodity Prices |
31218324 |
Alpha-Numeric Handwritten Dataset |
4814459 |
Alpino Treebank |
21604821 |
Alpino Treebank |
21604821 |
Altair-BigMartdataset |
869537 |
amazon |
5926077 |
Amazon Access Dataset |
1942722 |
Amazon baby dataset |
49439484 |
amazon dataset RBL |
655131909 |
Amazon Echo Dot 2 Reviews Dataset |
2459986 |
Amazon Fine Food Reviews |
673703435 |
Amazon Reviews |
155162134 |
Amazon Reviews for Sentiment Analysis |
516929648 |
Amazon reviews: Kindle Store Category |
278372938 |
Amazon Reviews: Unlocked Mobile Phones |
131879567 |
Amazon stock 2015 |
15235 |
Amazon_review-full |
1219911 |
Amazon.com_Employee Access Challenge |
1942722 |
amazonv2 |
5926077 |
ambassidorData |
32851 |
Ambassodor |
112 |
Ambiguity |
2229 |
AMD and GOOGLE Stock Price |
237464 |
Amending America |
5418159 |
American Presidency Project |
343968592 |
American Time Use Survey |
1643970845 |
American University Data IPEDS dataset |
1240380 |
Ames dataset |
912081 |
Ames Housing Prices |
963738 |
AMJ Metadata |
1423350 |
amount of vehicles in Beijing |
152064 |
AMran Marib KAP, WASH |
10806 |
An Open Dataset for Human Activity Analysis |
454701982 |
Analisis Dataset SO2 de Chimenea de planta |
1646338 |
Analysis about crypto currencies and Stock Index |
681413 |
Analysis Bay Area Bike Share Udacity |
641057 |
Analysis on survival of life in titanic |
2843 |
analytics |
61194 |
analytics |
1397246 |
Analytics_102 .. |
1397246 |
analytics_dataset |
1397246 |
Analytics102 |
1395830 |
Analytics102Solution Dataset |
1397246 |
anchal |
451405 |
AND OR XOR |
78 |
Andover Text |
1343 |
android |
569254 |
andy harless's models stack |
10426904 |
Animal Bites |
691381 |
animated test |
89404 |
animated vs realistic |
300386 |
Anime Recommendations Database |
112341362 |
anime-ord |
1011124 |
anime-utf8 |
1012559 |
AnimeData |
26881506 |
Anna University - Results Dataset |
29933943 |
Anna University results May-June 2016 |
29946624 |
annaunivclg |
9001 |
anneng123 |
2614480 |
Annotated Corpus for Named Entity Recognition |
172238510 |
Annotated Corpus for Named Entity Recognition |
2317034 |
Annual Nominal Fish Catches |
4385944 |
anonymous_survey |
121107 |
another |
1229 |
anotherdatabase |
15278727 |
Antimicrobial resistance - dataviz2015 |
56331 |
AP Computer Science A Exam Dataset |
30677 |
Apartment data |
1043072 |
apj.jpeg |
216218 |
app-price |
463538 |
Apple Stock Prices from 2010-2017 |
232757 |
Apple_Stock_price |
1617 |
applestocks |
434879 |
Appliances Energy Prediction |
11979363 |
Appoints |
10850022 |
APRIL_LSTM_SVR_GP_v2 |
2031592 |
aps_example |
8789291 |
Arabic - Egyptian comparable Wikipedia corpus |
276666788 |
Arabic Handwritten Characters Dataset |
76616506 |
Arabic Handwritten Digits Dataset |
259116071 |
Arabic Natural Audio Dataset |
586942737 |
arabic_tweets_vs_dialects |
226281 |
Archive |
7549 |
Archived_SmartMeter_Data |
59878235 |
Area and Geography |
504712 |
Argentina's Private Neighborhoods |
174189 |
Aristo MINI Corpus |
103465506 |
Armenian Online Job Postings |
96790782 |
Armenian Pub Survey |
33208 |
Armors, Exoskeletons & Mecchas |
43759 |
Array of objects with two fields |
136 |
Array of recipes |
12415067 |
Arrest Related Violence in California |
20950056 |
Arrests by Baltimore Police Department |
19915966 |
Article Titles from TechCrunch and VentureBeat |
1397372 |
articles |
26442972 |
Articles from wikipedia |
1426478 |
Articles sharing and reading from CI&T DeskDrop |
29942455 |
Arxiv Astrophysics Collaboration Network |
10568976 |
ARXIV data from 24,000+ papers |
5913087 |
As 500 empresas que mais devem a previdencia |
39969 |
asdadda |
514556 |
asdasdasd |
8 |
asdf 3456 e3d4f5 |
13593165 |
asdf_v1 |
7974978 |
asdfgdfghjk |
668 |
asdfghjk |
454 |
asdfghjkasdfghjk |
127723 |
asdfghjklæø |
454 |
asdfsds |
6547834 |
Asian American Actors |
3129 |
Asian.csv |
5450 |
asian123.csv |
5450 |
ASII 5 years |
171479 |
ASII.jk |
229716 |
AskDocs Posts |
222635 |
assign |
18245 |
Assignment 8 |
61194 |
assignment1 |
752137 |
Association of Tennis Professionals Matches |
11898898 |
Association Rules |
301359 |
Astronomy |
99358 |
ASX Australia Equity Prices - 1997 to 2016 |
247367064 |
Atlas of Pidgin and Creole Language Structures |
1564943 |
ATM Transaction Data of City Union Bank |
847136 |
Atom Dataset |
0 |
ATP Matches, 1968 to 2017 |
33004965 |
ATP Men's Tour |
9471729 |
ATP Tennis Dataset |
2579313 |
attempt2 |
17101377 |
attractions |
740220 |
attrition de clientes |
13087604 |
Attrition Example |
235331 |
attrition-csv |
3111278 |
ATUS Data 2015 (Exercise Portion) |
766632 |
ATVICSV |
158860 |
atviprice |
201 |
ATVIStockPrice |
158860 |
Audio Cats and Dogs |
61536433 |
Audio Features for Playlist Creation |
683544 |
Audio features of songs ranging from 1922 to 2011 |
443424016 |
audioa |
192264 |
aug_data |
55285 |
augment data |
31364 |
Austin 311 Calls |
171303265 |
Austin Bike Share Trips |
87346478 |
Austin Crime Statistics |
19419689 |
Austin Waste and Diversion |
63489783 |
Austin Weather |
105734 |
Austin Zoning Satellite Images |
596268822 |
Australia NSW traffic penalty data 2011-2017 |
9060956 |
Australian Broadcasting Commission |
4054966 |
Australian Domestic Airline Traffic |
1332539 |
Australian Football League Database |
7892768 |
Australian Marriage Law Postal Survey |
300680 |
Australian National University Courses |
740058 |
Author Disambiguation |
24222133 |
author_train |
1345945 |
AuthorIdentification |
628563 |
Auto Insurance in Sweden |
940 |
Auto Insurance in Sweden (small dataset) |
765 |
Auto MPG Data Set |
30286 |
Auto-Mpg Data |
14080 |
Auto-mpg dataset |
18131 |
auto-price-train-data |
134964916 |
AutoAssign |
18428 |
automateassignment |
18070 |
Automatic generation of Guard roles |
193223 |
Automobile Dataset |
25070 |
automobiles |
18131 |
autompg |
19944 |
autompg |
32149 |
Autos - Consumo Gasolina Mexico |
371902 |
Autos_Edited |
28673796 |
AV datahack |
802079 |
AV_8jan |
1270747 |
AV_bank_cross_sell |
344589708 |
av_cross_sell_train_data |
206958153 |
av_hack |
387701398 |
AV_hiring |
802079 |
AV_Mckinskey |
700124 |
av_vala |
387701398 |
Average Fuel Consumption |
3722 |
Average SAT Scores for NYC Public Schools |
81172 |
Average Sun Spot Number |
5850 |
Averaged Perceptron Tagger |
6138625 |
AvgHappinessScore |
11903 |
AvgHappyscore |
11903 |
avglgmxgb |
1148751 |
Aviation Accident Database & Synopses |
3908294 |
awefwrgwfewefwe |
12131320 |
Awesome Public Datasets as Neo4j Graph |
2956968 |
AWS Spot Pricing Market |
1815291461 |
Azerbaijan Voter List, 2016 |
739089516 |
B6266B |
465754 |
Baboon Mating and Genetic Admixture |
1573631 |
Baby girl breast feeds |
199511 |
Baby Photos |
116207 |
Bach Chorales Data Set |
304998 |
BachelorsDegreeWomenUSA |
5681 |
Bad teeth, sugar and government health spending |
311044 |
Bad words |
3477 |
BADM_dataset |
3807560 |
BadWordsGoole |
1474 |
Bag of word meets bag of popcorn |
27246077 |
Bag of Words Meets Bags of Popcorn |
54896086 |
Bag of Words Meets Bags of Popcorn |
33556378 |
Bag of Words Meets Bags of Popcorn unlabeled |
27649993 |
Bag of Words Meets Bags of Popcorn: Data |
54896086 |
Bagging |
18196682 |
Bagrut grades in Israeli high schools (2013-2016) |
609824 |
Baltimore 911 Calls |
295690533 |
Baltimore 911 Calls For Service 2015- late 2017 |
64663547 |
Baltimore 911 Calls for Service, 2015-2017 |
212145583 |
Banco Imobiliário |
4117 |
bancos |
134945 |
Bancos |
248022779 |
Bandwidth occupancy |
10643913 |
Bangalore_Cell_ORR |
814652 |
Bank Account Movements 01-01-2017 to 08-11-2017 |
69097 |
Bank Churn Modelling |
684858 |
Bank Fears Loanliness |
66100489 |
Bank Loan Status Dataset |
20589209 |
Bank Marketing |
461474 |
bank marketing |
918960 |
Bank Marketing |
918960 |
Bank Marketing Dataset |
461474 |
Bank Marketing Dataset |
918960 |
Bank Marketing-Dataset |
465338 |
Bank Markting Dataset Description |
3864 |
bank notes |
45088 |
Bank Telemarketing (moro et al.) |
489118 |
Bank_Loan_data |
696953 |
bankdata |
133638 |
BankProject |
239185824 |
Banks data |
687440 |
Barcelona Accidents |
10518158 |
Barcelona Accidents |
17866759 |
Barcelona Unemployment |
41655 |
Barclays Premier League Games Won 2010-16 |
858 |
Base de dados de testes |
15737 |
BASE DE DATOS |
380152 |
base de teste |
143736 |
base model |
14133049 |
base_sin |
23247018 |
base-weights |
22843928 |
Baseball |
848362 |
Baseball Data |
13289647 |
Baseball Databank |
24711821 |
Baseball_stats_LR_avg |
499829 |
BaseballData-JohnKruschke |
33913 |
baseballfield |
5138872 |
Baseline |
28698153 |
Baseline |
3258 |
baseline |
74007502 |
Baseline Results |
7237183 |
baseline_ru_ |
7270173 |
baseline_weight_toxic |
22786953 |
baseline-script2 |
55512 |
Basemanp |
2284 |
Basemap |
1736475 |
Basemap |
1796170 |
Basemaps |
1796170 |
Basic Classification Example with TensorFlow |
150 |
Basic Computer Data |
296595 |
Basic Income Survey - 2016 European Dataset |
3602700 |
BasinCharacteristic_v1 |
10951 |
Basket Ball Computer Vision |
8562527 |
Basket Optimisation |
302908 |
BasketBallShots |
12046 |
BasketBallShotsLog |
870 |
batches_meta_for_CFAR10 |
158 |
Baton Rouge Crime Incidents |
69410481 |
Baymax_test |
4979247939 |
Baymax_train |
7464855374 |
bbbbbb |
4072076 |
bbbbbb |
19576768 |
BBK Deep Learning lab trained weights |
2465781 |
BBK Lab models |
7286507 |
BBVA data challenge |
3111232 |
BC-testing |
4967 |
BCGENES |
59511 |
BCtest3names |
5241 |
Bctest4 |
58121 |
Bctest4e |
1959 |
BCtestEval3 |
989 |
BCtesting2 |
4967 |
BCtesting3 |
5035 |
BCtesting3eval |
948 |
BCtestingVal |
880 |
BD_digits2017 |
8876037 |
Beat The Bookie: Odds Series Football Dataset |
88433374 |
Beautiful_Liar |
668613 |
BeeSensors |
127622 |
BeeSensorsTime |
152275 |
Beginner Projects - Analyse subtitles for a movie |
8167871 |
Beginner Projects - Ergonomic Study on Chopsticks |
2590 |
Beginner Projects - P03 - Data Wrangling |
39879524 |
Beginners |
460676 |
Beginners_test |
451405 |
Behavioral Risk Factor Surveillance System |
2879064925 |
Beijing PM2.5 concentration |
759218 |
Beijing PM2.5 Data Data Set |
2010494 |
Bellwether Project 3 dataset |
35627627 |
Ben Hamner's Tweets |
809545 |
Ben's training dataset |
38013 |
Benchmark |
9914219 |
Bengali Digit Recognition in the Wild (BDRW) |
1460338 |
Benz data |
75220 |
best single model tested |
206347 |
Bestseller books on Paytm |
2483706 |
bestz3 |
4072076 |
Betfair.com Market Analysis |
31376 |
beth_20180112_3 |
4905469 |
beth_20180113 |
4917916 |
beth_20180116 |
4900805 |
beth_20180116_1 |
4913642 |
beth20180111 |
4710144 |
beth20180111_2 |
4710152 |
beth20180112 |
4771899 |
beth20180112_2 |
4913555 |
Better Life Index 2017 |
461364 |
Better Life Index and Gross Domestic Product |
441253 |
(Better) - Donald Trump Tweets! |
1703362 |
Between Our Worlds: An Anime Ontology |
101255372 |
BFRO Bigfoot Sighting Report |
510758 |
Bi-LSTM Glove Toxic |
14303674 |
bi-sep-2d |
2150 |
Bias Media CAT |
75828094 |
Bible Corpus |
448027096 |
Bible Verses from King James Version |
5130834 |
Big Bash Dataset(till 2017) |
6304660 |
Big Data courses in chennai |
744359 |
Big mart sales |
1397246 |
BIG MART sales |
1397246 |
BIG MART SALES PREDICTION |
1603339 |
big_data |
113183 |
bigavg |
5734230 |
BigBangTweets |
11929 |
Bigdata |
839 |
bigdata |
13010289 |
BigMart |
869537 |
BigMart Dataset |
1397246 |
Bike July & August |
29179 |
Bike Share Daily Data |
1214305 |
Bike Share Data |
3155333 |
BikeShare Analysis |
12745432 |
Billboard 1964-2015 Songs + Lyrics |
7953541 |
billboard-exercise |
90190 |
billion word imputation |
1791536775 |
BinarClass |
106113693 |
Binary 100 iv3 |
13884138 |
binary 100 iv3 299 |
14123531 |
Binary 2D Points |
2150 |
binary CD 3956vs3954 iv3 224 |
21593750 |
Binary_100-iv3 |
13884138 |
Binary_CD11 |
73306495 |
Binary_iv3_100 |
13884138 |
Binary-100-inceptionV3 |
12191155 |
Binary-100-iv3 |
12191155 |
Binary-incemptionv3-100 |
13884138 |
Bioassay Datasets |
225816146 |
Biocreative PPI |
1537086 |
Biodiversity in National Parks |
17505172 |
Biogas Datafile |
1580 |
Biomechanical features of orthopedic patients |
51144 |
Bird Strikes |
9711657 |
Birds' Bones and Living Habits |
25520 |
Births in U.S 1994 to 2003 |
64494 |
BITCOIN |
230935 |
Bitcoin (USD) Price |
76441 |
Bitcoin & Altcoins in 2017 |
827218 |
Bitcoin CZK/USD 2017 12 07 |
281400 |
Bitcoin Historical Data |
125130895 |
Bitcoin historical price |
28645 |
bitcoin merged |
111786 |
Bitcoin Price over the years |
44854 |
Bitcoin Price Prediction (LightWeight CSV) |
111826 |
BitCoin stuff |
4967 |
bitcoin twitter |
1236482 |
Bitcoin twitter |
1236558 |
Bitcoin Twitter Feed |
1236398 |
Bitcoin Vericoin dataset (Poloniex + Mosquito) |
54084383 |
Bitcoin_PriceMovement |
40131 |
bitcoin_prices_coinbase_USD |
47846994 |
bitcoin-pic |
22767 |
Bitcoin,Etherium,Litecoin Exchange Price |
181778 |
'Bitcoin' volume on Google |
3327 |
BitcoinData |
1686 |
bitcoinData |
120208 |
BitcoinData2 |
1499 |
BitcoinData3 |
1413 |
Bitfinex hourly BTCUSD |
2619778 |
Biticoin Enigma |
40131 |
Biticoin Kernel |
40131 |
Biticoin price Movement |
40131 |
Biticoin Price Movement over the years |
40131 |
BIXI Montreal (public bicycle sharing system) |
174436124 |
blaaaa |
4072081 |
Blabla |
41096944 |
blabla |
203 |
Black Friday |
7870870 |
Blend 1 |
7913980 |
Blend 1 5 |
9334493 |
Blend 1_1 |
7946488 |
Blend 1_2 |
7946488 |
Blend sub 2 |
7954022 |
Blend1 |
7946488 |
BLLIP Parser Model |
54298623 |
Blog Authorship Corpus |
800419647 |
Blood Cells |
306982020 |
Blood donation in Brazil |
22258 |
Blue Plaques |
26942816 |
bmax2017 |
4082655 |
BMTC data set for device id 150813052 |
7954109 |
BMTC_data |
7954109 |
Boa-png-title |
0 |
Board Game Data |
1490899 |
board games |
51277028 |
Board Games Dataset |
147056640 |
boats1 |
104475 |
Body measurements |
58818 |
body zones TSA |
269994 |
Body Zones TSA |
269994 |
BonCoin |
784851 |
book_len |
43907601 |
Border_collie_stylized |
1413276 |
Boris/Santander Bikes London |
401920 |
Boston |
44575 |
Boston 311 non-emergency data 2015 |
18540424 |
Boston 311 non-emergency service data 2015 |
18540424 |
Boston Airbnb Open Data |
75598461 |
Boston Celtics Roster Data 14-15 |
915 |
boston Dataset |
45082 |
Boston House Prices |
49082 |
Boston Housing |
35883 |
Boston Housing |
12925 |
Boston Housing |
45082 |
Boston Housing |
12435 |
Boston housing dataset |
35008 |
Boston_housing |
626120 |
bottleneck features inception/xception |
23370804 |
bottleneck_features |
152597337 |
BoW Test data |
32724746 |
boxdata |
35423835 |
boxplot |
255187 |
boxp ot |
419365 |
BR on Sep 2017 |
19524 |
brain_body |
1258 |
brain_body1 |
1258 |
Brainwave |
989899 |
brainwave-1 |
845939 |
Brainwaves-2 |
39652204 |
Brainwaves2018_Hackathon_Q2_FraudulentTransactions |
39652204 |
Brand Characteristics |
1093505 |
Brazil Elections 2014 |
30224279 |
Brazil Gdp & Electricity Consumption |
1153 |
brazil_chambers_of_deputies_2015_2017 |
32595274 |
Brazil's House of Deputies Reimbursements |
412860343 |
Brazil's House of Deputy Refunds |
333806963 |
Brazil's Parliamentary Quota - Cota Parlamentar |
80335104 |
Brazilian Aeronautics Accidents |
629609 |
Brazilian Coins |
410011522 |
Brazilian congress |
121196414 |
Brazilian Federal Legislative activity |
55316944 |
Brazilian Motor Insurance Market |
1853678 |
Brazilian National Congress' open data - 2016 |
8306780 |
Brazilian Portuguese Literature Corpus |
23629080 |
Brazillian Sexual Gender |
19978527 |
Breakaway |
7598 |
Breakdown of Titanic Passengers by Class |
99663 |
BreasCance Predication |
125773 |
breast cancer |
125204 |
Breast Cancer (Diagnosis) Wisconsin Data Set |
125204 |
breast cancer dataset |
19889 |
Breast Cancer Dataset |
125141 |
Breast Cancer Dataset |
14552 |
Breast Cancer Excercise |
927975 |
Breast Cancer Proteomes |
12440701 |
Breast Cancer Wisconsin |
125141 |
Breast Cancer Wisconsin - Data Set |
125773 |
Breast Cancer Wisconsin (Diagnostic) Data Set |
125773 |
Breast Cancer Wisconsin (Diagnostic) Data Set |
125204 |
Breast Cancer Wisconsin (Prognostic) Data Set |
125204 |
Breast Histology Images |
41647052 |
Breast Histopathology Images |
1644892042 |
Breast_Cancer_Prediction |
757015 |
Breast-Cancer Diagnosis |
124103 |
Breast-Cancer Wisconsin |
20723 |
breast-cancer_fixed |
20028 |
breastcanceranalysis |
125204 |
BreastCancerDataset |
125204 |
breastdata |
125204 |
Breathing Data from a Chest Belt |
56598 |
Breweries & Brew Pubs in the USA |
23206956 |
BRFSS 2001-2010 |
3995416294 |
Brighter Monday Job Listings |
131585 |
BRIS_SOL |
4598266 |
bris_solar |
4598215 |
BRIS3solar |
1004626 |
BRIS4solar |
978902 |
bris5soalr |
978902 |
bris6solar |
978902 |
Brisbane-solar |
16114172 |
British Birdsong Dataset |
664058938 |
British Queen's Oversea Visits |
44580 |
Brown Corpus |
3314357 |
Brown_corpus |
2311316 |
BSETestingData |
394601 |
btc test dataset |
254 |
btc train dataset |
120314 |
BTC-daily-to-2017-12-22 |
175131 |
BTC-predict-daily-direction-exchange-rate |
4520696 |
BTC2-echange-rate |
799402 |
btc2data |
800397 |
btc2data2 |
1599799 |
BTCUSDKRAKEN |
113646 |
buddha |
156888 |
Buenos Aires public WiFi access points |
1468312 |
Bug Triaging |
3331086 |
Bugcr1 |
642961 |
Build Bridges, Not Walls |
312885086 |
Building Management System Analysis |
6837022 |
Buildings in Vyronas, Athens |
80606350 |
Burritos in San Diego |
68238 |
Bus Breakdown and Delays NYC |
34426888 |
Busiest Airports by Passenger Traffic |
38193 |
Business and Industry Reports |
42122543 |
buxbuxx |
4053304 |
C Core train data set |
61145796 |
c++ output |
3928163 |
C++ ROCKET SIMULATION |
26602 |
C++ submission |
4080826 |
calc_case_description_train_set .csv |
925310 |
CalCOFI |
269479923 |
calendars |
3530 |
calhousingclean |
956962 |
California cities dataset |
68212 |
California Crime and Law Enforcement |
100594 |
California DDS Expenditures |
41947 |
California Electricity Capacity |
16677076 |
California Facilities Pollutant Emissions Data |
1289427 |
California Housing |
1423529 |
California Housing Prices |
409342 |
California Housing Prices |
1423529 |
California Kindergarten Immunization Rates |
7615380 |
California Wire Tapping |
16254187 |
Call Tests Measurements for MOS prediction |
5849559 |
cambridge_net |
41367 |
cambridge_net_titles |
36703 |
camera_dataset |
86961 |
Campaign Finance versus Election Results |
608167 |
Can You Predict Product Backorders? |
140115122 |
Canada National Justice Survey 2016 |
4510407 |
Canadian Car Accidents 1994-2014 |
369929843 |
Canadian Disaster Database |
2413370 |
Cancer Data 2017 |
2859 |
Cancer Inhibitors |
1997120952 |
Cancer inhibitors cdk2 protein |
30978162 |
cancer_test |
6144 |
cancer_train |
25762 |
cancerdata |
119889 |
Cannabis Strains |
424888 |
capital-tpdatos |
228297591 |
Captcha Images |
2108196 |
Car brands (1970 to 2016) |
683595 |
Car Emissions data |
821983 |
Car Evaluation |
51867 |
Car Evaluation Data Set |
53593 |
Car Features and MSRP |
1475504 |
Car Insurance |
31424312 |
Car Insurance Cold Calls |
974312 |
Car Mileage |
1783 |
Car Sale Advertisements |
538237 |
Car sales |
16018 |
Car sales |
399 |
Car trips data log |
274521770 |
Car_sales |
16774 |
Car_sales.csv |
16774 |
Caravan Insurance |
1712632 |
Caravan Insurance Challenge |
1762896 |
Caravana : Dont get Kicked |
14487324 |
Carbon Dioxide Levels in Atmosphere |
31974 |
Carbon Emissions |
627195 |
Carbon Monoxide Daily Summary |
2289514800 |
card_glm |
2126191 |
Cardset |
2862995 |
CargoDataCsv |
287859225 |
Cars Data |
37716 |
Cars Data |
8724 |
Carsales |
12017 |
CART, RF train and test datasets |
1075370 |
CartolaFC |
8880984 |
Case Data from San Francisco 311 |
666969758 |
caseData |
8440826 |
Cat Image Test |
190857 |
CAT Scan Localization |
81517067 |
cat vs dog |
854597350 |
cat_17 |
17081526 |
cat_out |
17105052 |
Catalonia GDP by demand components (2000-2016) |
1973 |
catboost |
17078300 |
catboost data |
20650662 |
Catboost_best_1 |
25324 |
catboost-porto |
4931645 |
catboost1223 |
8224176 |
catboost122302 |
7913283 |
catboost122303 |
7886839 |
catboost1224 |
7939814 |
catboost122402 |
7904888 |
categories |
441411 |
Categories |
416158 |
categories |
53079 |
Caterpillar Tube Pricing Dataset |
2781029 |
catndog |
24007391 |
catndog |
24007391 |
Catndog |
45441084 |
Cats and Dogs |
870693599 |
Cats Versus Dogs |
65851768 |
Cats Vs Dogos |
284321224 |
cats_vs_dogs |
17944920 |
cats&dogs |
227731756 |
CatsNDogs mini |
231180273 |
CatVsDogPKLfile |
615497712 |
CAUSES OF DEATH IN THE WORLD 2014 |
15495023 |
CCAA_pupulation |
32846 |
cccccc |
1464646 |
ccfant |
423245510 |
CD_11_100_iv3_224 |
73306495 |
CD11 100 iv3 224 |
73306495 |
CD11 100 iv3 224 |
73306495 |
Cdbc 300 iv3 180 1stImg |
7724015 |
CDbc 300 iv3 224 |
13727516 |
cdbc-1000ts-iv3-180-1stimg |
25757753 |
CDbc300iv3-180-1stimg |
7724015 |
CDC 500 Cities |
586177 |
Cdiscount image classification submission samples |
732 |
cdiscount_data |
631150 |
CdiscountDataset |
7856670 |
Celebrity Deaths |
2153226 |
Celebrity Tweets |
441218 |
Census |
478999 |
Census data |
3448964 |
Census Income Dataset |
667697 |
Census India 2011 |
5663455 |
census USA |
1019724 |
censusdata |
317951 |
Centers for Medicare & Medicaid Service Area Data |
5910190 |
ceral analysis |
14409 |
ceral_ |
14409 |
cereal |
5157 |
cereal dataset |
5063 |
cereals dataset |
5063 |
Cervical Cancer Risk Classification |
102059 |
Cervical cancer tumor vs matched control |
108016 |
CESS Treebanks |
7617080 |
cfnai real time data |
5268348 |
Chacha ami! |
18340 |
Challenge : Day2 |
3195 |
Challenge Data |
4722734 |
Challenge day 1 |
7441975 |
challenge_output_data_training |
93423 |
Chance |
9292156 |
Chance the Rapper Lyrics |
69613 |
changed |
1025240 |
Chapter2 |
2099 |
chapter3-python |
789 |
chapters |
557939 |
char_num_dataset |
5670 |
Character Encoding Examples |
970146 |
Charguana |
364464 |
#Charlottesville on Twitter |
186136781 |
Chase Bank Branch Deposits, 2010-2016 |
975562 |
Chat 80 |
63817 |
Chat messages |
124927221 |
Check 3x3 Sudoku is Valid |
719514 |
Cheltenham Crime Data |
1053273 |
Cheltenham's Facebook Groups |
61610188 |
Chemical Health Effects and Toxicities |
1505141 |
Chemical Substance Registry (CAS registry numbers) |
9752891 |
Chennai Bus Route Data |
58992 |
Chennai Bus Route Dataset |
59085 |
chennai house pricing |
1270747 |
Chess Black Wins |
1904072 |
Chess Game Dataset (Lichess) |
7672655 |
chestxraytest |
4979445554 |
chestxraytrain |
7465411423 |
Chewable |
5691 |
chi-sqare |
31025 |
Chicago - Citywide Payroll Data |
2269754 |
Chicago census data by community area |
5709 |
Chicago Crime |
376322518 |
Chicago Crime Data |
15613459 |
Chicago Red Light Violations |
48686731 |
Chicago Restaurant Inspections |
184756352 |
Chicago Taxi Rides 2016 |
2172282078 |
Chicago Towing Records |
423464 |
chicago_weather |
2864907 |
Chicken |
1617 |
chicks |
717 |
Childhood Blood Lead Surveillance |
174623 |
Chile Presidential Debate |
128810 |
China RDP |
496782 |
China RDP 2 |
496780 |
China RDP v2 |
496780 |
China RDPv2 |
496780 |
Chinese Characters Generator |
209080186 |
Chinese Delivery Drive |
58161 |
Chinese Stocks |
224023 |
chipotle |
364975 |
Chipotle |
364975 |
Chocolate Bar Ratings |
127723 |
Choosing the best Feature |
63014 |
Chosen ones |
1063529 |
chris' face |
156004 |
Christmas Tweets |
73584129 |
Chronic Disease Indicators |
122899180 |
Chronic illness: symptoms, treatments and triggers |
140920255 |
Chronic KIdney Disease dataset |
48551 |
Church Reuse Inventory |
85784 |
churn classfication |
506359 |
Churn datasets |
684858 |
Churn in Telecom's dataset |
310007 |
churn_ |
2191057242 |
Churn_Basic |
635954 |
Churn_Modelling |
684858 |
Churned Users |
7439338 |
churnModel |
684858 |
churnTest |
51260725 |
churnTrain |
53317710 |
Cifar-10 |
170062354 |
CIFAR10 |
169672749 |
cifar10 |
170062600 |
Cifar10 |
170062354 |
cifar10 |
170062600 |
cifar10 |
134 |
cifar10 |
186213868 |
CIFAR10 |
186213868 |
cifarData |
141720199 |
cifer 10 |
170550174 |
Circadian Rhythm in the Brain |
1132336889 |
City & Country |
79768 |
City Database |
4096 |
City Lines |
2547825 |
City of Baltimore |
2804 |
City of Baltimore Map |
2804 |
City Payroll Data |
93050081 |
Claim Close Gap |
52644037 |
Claim Close Gap Prediction |
52644037 |
Claims Data |
17545298 |
Claims data_1 |
29407903 |
ClaimsData |
17087291 |
Clap Emoji in Tweets |
729749 |
Clash royale Dataset |
4996 |
Clash Royale Matches |
415441375 |
Clásicos del fútbol Argentino |
54405 |
class_order |
104653 |
Class3a |
853 |
Class4 |
949 |
Class4B |
949 |
Class4d |
949 |
Classic Literature in ASCII |
129967536 |
classification |
30775109 |
Classification of Handwritten Letters |
76027645 |
Classification of Student Evaluation data |
391968 |
Classification_tutorial |
47370969 |
Classified Ads for Cars |
419466302 |
classified data |
194323 |
classifier |
31679 |
Classifying wine varieties |
10958 |
classPredictions |
8164154 |
clean_text |
52792929 |
Cleaned lingerie data from different brands |
321457 |
cleaned sentiment140 - not stemmed |
38974721 |
Cleaned version of multipleChoiceResponses |
325692 |
Cleaned Weather Dataset |
212218 |
cleaned_ner_ds |
2679160 |
cleaned_senitment140 |
9058119 |
cleanTest |
29336 |
cleanTrain |
59411 |
cleanTrain |
59411 |
Cleveland Cavaliers |
4494 |
clf2_new |
142132 |
click_here |
6347752 |
Climate Change: Earth Surface Temperature Data |
600625277 |
ClimateData |
3763 |
Clinical |
3026295 |
Clinical Trial data |
3026295 |
Clinical Trials on Cancer |
186114041 |
Clinical, Anthropometric & Bio-Chemical Survey |
335503326 |
Cloth folding videos |
247633399 |
clubName |
842879 |
cluster_labels |
13769188 |
clustering_basins |
6243 |
Clustering_Excercise |
885172 |
Clustering_Excercise2 |
6173 |
CM_MATRIX |
916674 |
CMAX applied to BRIC stock markets index |
10358 |
CMP data set |
12670 |
CMS Open Payments Dataset 2013 |
2470335100 |
CMU Book Summary Dataset |
16815835 |
CMU Dictionary |
3824638 |
CMU Pronouncing Dictionary |
3618062 |
cnn_18.18 |
240755 |
cnn-text-classification-tf |
1238901 |
CO2 PPM - Trends in Atmospheric Carbon Dioxide |
31745 |
CO2-Emissions |
594201 |
Coal Production Referenced from data.gov.in |
35225 |
cobaaniris |
5107 |
Cocacola en Youtube |
145943 |
Cocktail Ingredients |
213123 |
Code Mixed (Hindi-English) Dataset |
161013001 |
Code of Federal Regulations |
351797510 |
Code_echantillon |
1933 |
Codechef Competitive Programming |
1263797927 |
Coffee Drinking |
77 |
Coffee Growing Countries |
16272 |
Cognitive childs and their mothers |
11237 |
coin_price |
1731985 |
Colbert 1k |
4471428 |
Coles and Woolworths Prices |
1048 |
College Football Statistics |
33947123 |
College Football/Basketball/Baseball Rankings |
60576679 |
College life Missuri Institute |
11253 |
College Scorecard Data 2007 2008 |
130651899 |
College Scorecard Data 2008 2009 |
130555114 |
College Scorecard Data 2009 2010 |
135807805 |
College Scorecard Data 2010 2011 |
138657071 |
College Scorecard Data 2011 2012 |
145137728 |
College Scorecard Data 2012 2013 |
147074999 |
College Scorecard Data 2013 2014 |
145836006 |
Colombian Coffee 2016 |
125272 |
Colonia Corpus of Historical Portuguese |
79996432 |
Color terms dataset |
5401 |
color_image |
170062512 |
color1_image |
170062512 |
Colorado Shelter Euthanasia Animation DB |
384812 |
Column label |
703 |
Column labels |
705 |
combination1 |
537890 |
combine |
314968789 |
combined wine data |
448109 |
Combined_candy_usip |
15706 |
COMBO-17 Galaxy Dataset |
1714279 |
Comcast Consumer Complaints |
11476961 |
COMET COMDS0x |
348074 |
Comic Books Images |
2425186250 |
comments |
1068768 |
CommentsData |
15132 |
Commercial Bank Failures, 1934-Present |
405611 |
Commercial Paper |
1354785 |
Commercial Register Estonia |
43842273 |
commit_ridge |
6359598 |
Common Brazilian Names and Gender |
74389 |
Common Voice |
12902930268 |
Commuter train timetable |
163399031 |
Commuter train timetable |
163399031 |
CoMNIST |
110594455 |
compacts |
30946962 |
Company Sentiment by Location |
58693020 |
company_credit_rating_normalized_sp |
1117373 |
Comparative Sentences |
774200 |
Comparing Numerical Movie Review Scores |
15728 |
Comparing RF and the multi-output meta estimator¶ |
3631 |
COMPAS Recidivism Racial Bias |
23722513 |
Compb17 |
3152016 |
compet |
35831972 |
Competetition-1 |
17022819 |
Compiled_Ether_Data_Set |
83743 |
Complete Ayah Dataset |
3586177 |
complete dataset |
2304856 |
Complete FIFA 2017 Player dataset (Global) |
8979684 |
Complete Historical Cryptocurrency Financial Data |
2262400 |
completedata |
11590849 |
CompleteData |
726926 |
completeData |
80558031 |
Computer Network Traffic |
429946 |
Computer Parts Dataset (CPU, GPU, HDD...) |
1407971 |
ComTrans Corpus Sample |
35387522 |
ConceptNet |
718225 |
Concrete Compressive Strength Data Set |
59010 |
Congress Trump Score |
2496860 |
congressEducation |
34625 |
Congressional Election Disbursements |
1060333799 |
Congressional Voting Records |
534603056 |
CONLL Corpora |
17680836 |
Conmebol_Russia2018Qualifiers |
11677 |
Connecticut inmates awaiting trial |
120135212 |
conormacbride |
224080 |
Consonance and Dissonance Results |
9663 |
Consumer Business Complaints in Brazil |
425961054 |
Consumer Price Index |
66123274 |
Consumer Price Index by Year since 1913 |
1170 |
Consumer Price Index in Denver, CO |
3509989 |
Consumer Reviews of Amazon Products |
18386219 |
Consumo de energia |
6518 |
ConsumoRefrigerador |
6365897 |
Consumption of fuels used to generate electricity |
797251 |
Contribuintes ativos por UF |
54027 |
Contributions to Presidential Campaigns (real) |
22820098 |
control_data |
1125 |
conver |
1696200 |
Conversation JSON |
3881 |
ConversationAI |
83578341 |
ConversationAIDataset |
83578341 |
Cook County Asset Forfeiture (Chicago, IL) |
3163876 |
coolest |
287728 |
Coordinates Map |
847 |
coordinates-country |
87122 |
copy of santa gift matching dataset |
19059086 |
Copy of wikipedia-language-iso639 |
2519 |
corn.csv |
11979 |
Corporacion Favorita unpacked |
127861780 |
Corporate Prosecution Registry |
946178 |
corporita-sampled train data |
518253183 |
Corpus of bilingual children's speech |
956206 |
Corpus of Brazilian Portuguese Literature |
23629080 |
correct_submission |
9978 |
Correlates of War: Interstate Wars |
107046 |
Correlates of War: World Religions |
642238 |
Correlation Solutions |
50606111 |
Corruption Perceptions Index |
23204 |
Council Plan performance indicators |
77489 |
Count1 |
9704 |
Counties geographic coordinates |
8601 |
Counties with Smoking Ban |
3984620 |
Countires and number of respondents |
312634 |
Countries |
1346 |
Countries and number of respondents spatial object |
312634 |
Countries Info |
60799 |
Countries ISO Codes |
9451 |
Countries of the World |
256950 |
Countries Population |
134321 |
Countries Shape Files |
9146048 |
countries_lon_lat |
1702 |
country code |
4166 |
country continent codes |
5224 |
Country Profile |
4918 |
Country Silhouette Images |
817318 |
Country Socioeconomic Status Scores, Part II |
92201 |
Country Socioeconomic Status Scores: 1880-2010 |
118350 |
country-cordinates |
87122 |
County Smoking Ban |
3569 |
County_W_SM_Ban |
437136 |
Course transaction |
2894492 |
Coursera - Machine Learning - SU |
8024 |
Coursera Data Science Capstone Datasets |
493860249 |
courseraloan |
20322341 |
courses_20171206 |
143520 |
Coursework2 |
4206156 |
Cousin Marriage Data |
933 |
cp_1month |
54460905 |
cprofiling_1 |
2505853 |
CPU Data Cleaned |
1095 |
CPU Utilization Data |
11597 |
Craft Beers Dataset |
182596 |
Crashes 2014 |
81635508 |
Crashes 2014 csv |
134853071 |
creativity |
566778 |
Credit Card Applications |
35641 |
Credit Card Data from book "Econometric Analysis" |
73250 |
Credit Card Fraud Detection |
150828752 |
credit_card_database |
6632243 |
credit-bank-data |
133638 |
creditcard |
150828752 |
CreditScores |
4672098 |
CreditTestData |
4983329 |
Crescimento da População Brasileira |
1266 |
Cricinfo Statsguru Data |
2721164 |
Cricketer Info From espncricinfo |
8716715 |
crime senior citizen |
12848 |
crime against women in India |
249856 |
crime analysis |
10620 |
crime analysis |
27719 |
crime analysis |
11788 |
Crime analysis |
9463 |
crime classifcication |
107979 |
Crime Classification dataset |
407663 |
Crime committed against Senior citizen |
11788 |
Crime Data in Brazil |
842874744 |
Crime in Baltimore |
41173772 |
Crime in Bulgaria, 2000 to 2014 |
135102 |
Crime in Context, 1975-2015 |
263935 |
Crime in India |
12841047 |
Crime in Los Angeles |
377870521 |
Crime in the U.S. |
186880 |
Crime in Vancouver |
58924580 |
Crime Investigation |
14026 |
crime report |
88064 |
Crime Statistics for South Africa |
24559707 |
crimean |
663701 |
crimecsv |
12848 |
crimenbogota |
593186 |
Crimes Committed in France |
98316 |
Crimes de São Francisco |
23670377 |
Crimes in Chicago |
1991120451 |
Criminal |
1584533 |
Criminal |
1563180 |
Criminal Dataset |
1584533 |
Criminal DataSet |
1584621 |
criminal_train |
1584533 |
Criminals |
1584533 |
Criminals |
1584533 |
crittical |
294163 |
Crop Data Analysis |
698951 |
Crop Nutrient Database |
287615 |
Cross-position activity recognition |
83372747 |
Cross-sell: target the right customer |
206939073 |
CrowdAnalytx_Tennis_pREDICTION |
832353 |
Crowdedness at the Campus Gym |
3447605 |
Crowdfunding Data (Reg CF) |
329917 |
crttical |
294163 |
Crubadan |
11256183 |
crunchbase_monthly1 |
1706822 |
Crypto |
14827433 |
crypto |
24717 |
Crypto Currencies |
2855340 |
Crypto Currencies |
2341674 |
Cryptocoins Historical Prices |
20518707 |
Cryptocurrencies |
9049796 |
Cryptocurrencies Price |
210068 |
Cryptocurrency Data |
2271662 |
Cryptocurrency Historical Data |
648785 |
Cryptocurrency Historical Prices |
1708056 |
Cryptocurrency Market Capitalizations |
143774 |
Cryptocurrency pricing recent history |
5513413 |
CryptoCurrency Trade History |
326560906 |
CS 405 NLP |
67479286 |
CS_MIT_6.00x_2012_NON_US_Students |
4559876 |
CS_MIT_US |
1736515 |
CS:GO Competitive Matchmaking Data |
384043159 |
CS228 Materials on python |
59309 |
CSC 630 Datasets |
201869670 |
csd.123 |
216 |
csd1234 |
189 |
csd1234 |
731 |
csd12345 |
731 |
csl406 |
103642069 |
csv format |
1180166 |
csv_inception |
7942529 |
CT Accidental Drug Related Deaths 2012-June 2017 |
802658 |
CT Medical Image Analysis Tutorial |
458149327 |
CTGData |
181381 |
Cuff-Less Blood Pressure Estimation |
5281643644 |
Cuneiform Digital Library Initiative |
201318316 |
curated_stackoverflow_dataset_for_Q_&_A |
349299 |
CuratedDataSource |
37321171 |
Currencies |
1708058 |
currency name |
6624 |
Current Population Survey |
314148794 |
Current Properati Listing Information |
486186644 |
Cuss words and Deaths in Quentin Tarantino Films |
63940 |
Custom data |
22450588 |
custom_layers |
5306 |
CUSTOMER CHURN |
977501 |
customer churn |
1192408760 |
Customer Churn |
26402063 |
Customer Data |
2682651 |
Customer Predictive Analysis |
329217 |
Customer Support on Twitter |
175038646 |
Customer Visits Data |
13718 |
Customers |
45420 |
Customers Data |
237238 |
Customers final |
237238 |
Customers Visits |
13712 |
CUSTOMPLOT |
940 |
cusume_layer |
7623 |
cusume_layers |
8680 |
Cyber crime |
663701 |
Cyber Crime Motives - India 2013 |
2628 |
Cycle of grass growth |
8658 |
Cycle Share Dataset |
47724176 |
D_test |
28629 |
D_train |
61194 |
D.C. Metrorail Transportation Ridership Data |
1240025 |
D00001 |
5733501 |
DACA Recipients |
1265698 |
dae test |
9825 |
Daikon (Diachronic Corpus) |
118301154 |
Daily and Intraday Stock Price Data |
437898965 |
Daily Fantasy Basketball - DraftKings NBA |
130299509 |
Daily Happiness & Employee Turnover |
51605003 |
Daily minimum temperatures |
68050 |
Daily News for Stock Market Prediction |
14884372 |
Daily returns for Apple and Microsoft stock |
173351 |
Daily Sea Ice Extent Data |
4491537 |
Daily views in Netflix |
22958 |
Dairy Hub Baseline and Scooping survey Embu |
121313 |
Dairy Hub Baseline Survey, Nyandarua |
149430 |
Dairy Hubs Baseline and Scooping survey-UasinGishu |
978624 |
Dallas Police Department Reported Incidents |
197281346 |
damiiii |
23930 |
Danube Water Quality Monitoring data |
59819810 |
Dark Destiny(in development) |
60631 |
Dark Net Marketplace Data (Agora 2014-2015) |
8071801 |
Darknet Market Cocaine Listings |
806564 |
Data Product Name Lazada Indonesia |
833473 |
data 1-train |
32828332 |
Data Analysis Assessment |
5986954 |
Data Exploration |
249117780 |
Data exploration energy prediction |
1185330 |
Data for mc |
261912642 |
Data for my self-learning |
217812 |
Data for public services on Brazil |
4088603 |
Data from OBD (On Board Diagnostics) |
233512 |
Data from worlds 2017 |
773365 |
Data Lab |
2558105 |
Data Management Dataset |
566778 |
Data Newb or is it Noob, sorry, I'm new to this |
373764 |
Data of GDP for all countries |
662372 |
Data Preprocessing |
226 |
Data s |
7314359 |
Data sample |
40478505 |
Data Science |
2321526 |
Data Science Jobs around the world |
1636642 |
Data Science London + Scikit-learn |
1971469 |
Data Scientist Survey Project |
7938934 |
Data Scientists by countries |
312634 |
Data Scientists vs Size of Datasets |
5917 |
data sensors |
3647432 |
Data Set |
61194 |
data set |
377414237 |
data set for happines |
29536 |
data set for yelp |
477907 |
Data set to predict Conversion Rate |
6863400 |
Data Sets |
93081 |
Data Shares Updated |
1925039 |
data source |
196737128 |
Data Stories of US Airlines, 1987-2008 |
5732078 |
Data test |
28314435 |
data test for python |
62792 |
Data upload test |
17498477 |
Data Visualization Final Project |
863606 |
Data Wilayah Republic Indonesia |
2701722 |
Data Wrangling |
809 |
_data_ |
189979994 |
Data__3 |
1810756 |
data_banknote_authentication |
45030 |
data_extract |
196737128 |
data_final1 |
4045017 |
data_final2 |
4044975 |
data_final3 |
4045041 |
data_final4 |
4045084 |
data_img |
221091747 |
Data_load |
196737128 |
data_new |
60033 |
data_properties |
11510318 |
Data_resume |
4309778 |
Data_Schizo |
215922329 |
Data_Set |
269807 |
Data_set_for default_creditors. |
72420922 |
data_sms |
5984996 |
data_sn |
7305227 |
Data_titanic_disater_prediction |
61194 |
data_train_tita |
61194 |
data_with_all_conts |
8301811 |
data_x1 |
4045075 |
data_x2 |
4045013 |
data-mercari |
196737128 |
data-salary.txt |
149 |
Data-Siebel |
1179612 |
data.csv |
256585 |
data.csv |
125204 |
data.txt |
18732 |
data1.csv |
125204 |
Data10 |
1810753 |
data10000 |
967307 |
data111 |
2176079 |
data1111 |
2176079 |
data12 |
170760 |
data12017 |
673800536 |
data2.csv |
125204 |
data2017 |
673800536 |
data201712 |
4163417 |
DATA2here |
11899 |
data4deshawcode |
78381308 |
dataaa |
29420 |
Database of Android Apps |
84000942 |
database.sqlite |
34297213 |
database.sqlite |
313090048 |
database2 |
45056 |
DataBundle |
182428995 |
DataCampTraining(Titanic) |
2843 |
datadata |
196737128 |
datadata1 |
4558 |
DataExample |
531 |
DataExoTrain |
30534811 |
DataForProject |
287859225 |
DataForTesting |
85723 |
DataImager Dataset |
48183945 |
datainput1 |
1135215 |
datainput2 |
1136571 |
datairis |
5107 |
Datalearning |
5 |
Datamining |
3119593 |
datams1 |
674950 |
datanew |
335 |
datanews |
11899 |
dataout2017 |
273386 |
datasci101 |
34682 |
Datascience Universities across US |
350113 |
DataSeer |
29170333 |
dataseparation |
33720022 |
dataset |
196737128 |
dataset |
64080981 |
Dataset |
171048828 |
dataset |
188114545 |
dataset |
1908375 |
dataset |
1270 |
Dataset |
196737128 |
dataset |
4388554 |
dataset |
2198879 |
dataset |
61194 |
dataset |
26881506 |
dataset |
1145608 |
dataset |
196737128 |
dataset |
18762 |
dataset |
55152040 |
DataSet |
5104423 |
DataSet |
196737128 |
dataset |
37819635 |
dataset |
469399139 |
dataset |
464472240 |
dataset |
2304944 |
dataset |
11986629 |
dataset |
1968558 |
dataset |
344589708 |
Dataset |
341425901 |
dataSet |
93081 |
Dataset |
515387 |
Dataset |
77123 |
dataset |
1155353 |
dataset |
322390820 |
DataSet |
48706 |
Dataset |
10307653 |
Dataset - Udacity's Intro to Data Analysis course |
946272 |
dataset by mistake |
3295644 |
dataset compete |
2304944 |
Dataset for 2016 US Election |
24845711 |
Dataset For Bayesian Classifier |
2423318 |
Dataset for collaborative filters |
31250807 |
Dataset for HMM Clustering |
2379723 |
Dataset for Insect Sound |
2617200 |
Dataset for Mercari Competition |
134964916 |
Dataset for Mercari Competition_test |
61772212 |
Dataset for Various Classification Algorithm |
2290261 |
Dataset for Various Clustering Algorithm |
2367761 |
Dataset malware/beningn permissions Android |
276896 |
Dataset of customer purchase |
35123906 |
Dataset of SMS messages |
515387 |
Dataset of Standard cards Magic:The Gathering |
379802 |
Dataset on company clients satisfaction |
545 |
Dataset tryout |
24 |
Dataset v2 coma |
415597 |
DataSet Vinos |
12306 |
DATASET WINE |
11394 |
DataSet_Analytics102 |
1397246 |
dataset_clientes |
734853 |
dataset_entre |
3640989 |
Dataset_mercari_descompactado |
196737128 |
dataset_sup |
9199904 |
dataset_unzip_mercari |
196737128 |
dataset- kaggle |
196737128 |
DataSet(Traffic flow) |
2283861 |
Dataset0 |
2434632 |
dataset1 |
18762 |
Dataset1 |
2605105 |
dataset12 |
18762 |
Dataset123 |
99895 |
dataset2 |
23654760 |
dataset2 |
7327877 |
Dataset2 |
2863661 |
dataset3 |
7318232 |
dataset44 |
45821350 |
Dataset8 |
64097906 |
DatasetDataset |
18217460 |
datasethere |
1302 |
DataSetPartidos |
2747380 |
Datasets for ISRL |
582659 |
datasets of iceberg |
302435 |
Datasets-Extras-Gobierno-Ciudad |
73169216 |
datasets-uci-breast-cancer |
141096 |
Datasets1 |
162534349 |
DatasetStacking |
391381 |
DatasetTest |
2058061 |
DataSetTitanic |
89823 |
datasettop |
151646 |
DatasetTrain |
391381 |
datasource1 |
19546258 |
datasource2 |
4132092 |
datasource3 |
18624463 |
datastockindex |
8460361 |
datastocks |
44603115 |
datatest |
4163417 |
datatest_R |
4163417 |
datawithusers |
226 |
date_info_same_dow |
3530 |
datos_titanic |
89823 |
Datset under development |
172104359 |
Day One CSV File |
7549 |
DBDA2-ja |
2059 |
DBLPTrainset |
639795 |
dc h1b |
99611854 |
DC Metro Crime Data |
113933745 |
DCAD data |
428969136 |
dcnn fhv lee 15k 4 |
8204027 |
DCNN fhv lee 16 |
7334532 |
DCNN fhv lee12 |
7619172 |
dcnn fhv lee16 |
7334532 |
DCNN fhv Lee4 |
8092963 |
DCNN fhv lee8 |
7998286 |
DCNN IE Aug part |
8075475 |
DCNN model |
24837626 |
DCNN model18 |
7974710 |
dddddd |
16920430 |
dddddddd |
53967 |
ddddddddddddddd |
5993 |
dddddddddddddddddddd |
16974329 |
ddffdssd |
5993 |
DDLJ 666 |
855780 |
DE Temp EC |
222623 |
DEA Drug Slang Code Words |
22092 |
Deadly traffic accidents in the UK (2015) |
19235021 |
dear genie kickstarter |
25608454 |
Death in the United States |
4334522180 |
Death Metal |
74263119 |
Deaths related to the Northern Ireland conflict |
477805 |
dec_numerai |
103040127 |
Deceptive Opinion Spam Corpus |
1349623 |
DecisionTree |
974484 |
DeconstructedGTD |
21059917 |
Deep Learning A-Z - ANN dataset |
684858 |
Deep Sea Corals |
146105985 |
Deep-NLP |
679231 |
deeplearning |
684858 |
defaite |
7533658 |
defaite2 |
4760019 |
Default of Credit Card Clients Dataset |
2862995 |
DELETE |
403343 |
delete_zero_price_item1 |
7361212 |
DELETED |
315905791 |
Delhi Weather Data |
6652900 |
Delpher Dutch Newspaper Archive (1618-1699) |
150761642 |
delta_pred |
2967586 |
demo_model |
530993226 |
demofile |
1271 |
DemographicData |
8360 |
Demographics |
1022 |
demonetisation-tweet |
919538 |
demonetizatiom |
231571 |
Demonetization in India |
40572843 |
Demonetization in India Twitter Data |
5258200 |
Demonetization talk on Twitter |
92171087 |
Demonetizing Rupee |
27822361 |
DemoProject |
54 |
demoset |
135919418 |
deng-dataset |
41591408 |
Dengue cases |
52153 |
Dengue cases |
52153 |
dengue cases 1 |
52153 |
Dengue Cases in the Philippines |
52153 |
dense child matrix |
303897380 |
DenseEP10B1B2IMDG |
255821 |
DenseNet-121 |
30330932 |
DenseNet-161 |
110722606 |
DenseNet-169 |
54060694 |
DenseNet-201 |
76541998 |
Densnet121+fine tuning |
30311364 |
Denver International Airport |
34599 |
Dependency Penn Treebank |
1069540 |
Depth Generation - Lightfield Imaging |
202078164 |
derfff |
7978017 |
Derivation |
562394592 |
Derivation |
562394592 |
Derivatives Trading |
1122607 |
dernier |
440983 |
des2017 |
78381308 |
Describing New York City Roads |
23009781 |
descripciones1-tpdatos |
317372677 |
descripciones2-tpdatos |
386955524 |
descripe |
13788274 |
Descript_Meta |
16094554 |
Despesas Notas de Empenho |
15570511 |
Detailed data from italian Serie A |
23656 |
Detailed NFL Play-by-Play Data 2009-2016 |
70282651 |
Detailed NFL Play-by-Play Data 2015 |
15488579 |
details |
44502 |
Details of resigned employees from Jan-17 |
53547 |
Details of Resigned Employees from Jan-2017 |
71724 |
Determine the pattern of Tuberculosis spread |
871348 |
Devanagari Character Dataset |
9834839 |
Devanagari Character Dataset Large |
66308602 |
Devanagari Character Set |
126630805 |
Developers and programming languages |
6734627 |
DFFF blood |
215899084 |
dfffflfl |
5993 |
dfgvbhnjk |
103 |
dftarin |
45719119 |
dftrain |
68371984 |
Diabetes |
30474 |
Diabetes 130 US hospitals for years 1999-2008 |
20652298 |
Diabetes Analysis1 |
1147017 |
Diabetes by Demographies |
2658 |
diabetes_columns |
14875 |
diabetes.csv |
23873 |
Diabetic |
3314579 |
Diabetic Foot Pressure Analysis |
62033419 |
diabities |
174158 |
diabities |
4787 |
Diagnose Specific Language Impairment in Children |
632972 |
Dialogues |
7654 |
Diamonds |
3192560 |
diamonds_arun |
9740 |
Dictionary |
1185995 |
dictionary & baseline generated from external data |
170033045 |
Dictionary for Sentiment Analysis |
1052 |
Dictionary of American Regional English (DAREDS) |
657924 |
dictionary1 |
34685 |
dictss |
1799 |
Did it rain in Seattle? (1948-2017) |
761976 |
different from our method of SFE |
14030378 |
different submission files |
114549146 |
Diffusion Mapping for Drug Combinations |
5483535 |
DigiDB Dataset |
59898 |
DigiDB_digimonlist |
15354 |
Digimon Database |
59898 |
Digit Recognition |
7502265 |
Digital Media |
695185 |
DigitRecognition |
7502265 |
digits dataset |
264712 |
Dilma impeachment Twitter Raw Data |
6280924 |
Diplomacy Betrayal Dataset |
53056025 |
Disaster/Accident Sources |
2406589 |
Discourse Acts on Reddit |
54391204 |
Discurso Macri (inauguracion Metrobus del bajo) |
4753 |
disease |
960 |
Diseased Person Dataset |
33859 |
Disk Space Data |
853924 |
Disputed Territories and Wars, 1816-2001 |
1388531 |
Distance Cycled vs Calories Burned |
3878 |
Divactory 2017 Warm Up Case |
42329822 |
Diversity Index of US counties |
192899 |
dj_lgb.csv |
17103032 |
DJIA 30 Stock Time Series |
6479382 |
djtest |
17097734 |
dl_baseline |
7362746 |
dlearning_help |
17083528 |
dmia_sport |
99361568 |
DMproject |
93081 |
dnet 16 |
292448 |
dnet 20 |
115440 |
dnet 24 |
292448 |
dnet 32 |
292448 |
dnet 40 |
292448 |
dnet 48 |
292448 |
dnet 8 |
292448 |
DNet10 |
39008 |
Do Conference Livetweets Get More Traffic? |
15308 |
DO NOT CONSIDER |
588761 |
DO NOT CONSIDER |
591893 |
Doctor and lawyer profiles on Avvo.com |
5869263 |
Doctor Vs Non_Clinical_Correlation-HSN April'17 |
2654 |
document |
42634214 |
Documents dataset |
515387 |
dododo |
93081 |
Dog_breed_identification_dataset |
724499986 |
dog_cat_subset |
47799254 |
dog-project/lfw |
196739509 |
doggoghj |
454914562 |
dogImages |
1132023110 |
Dogs of Zurich |
1568984 |
Dogs of Zurick |
1568984 |
Dogs vs Cats |
854397158 |
DogVGG16Data |
152597337 |
DolarToday & SIMADI Scrap |
2256 |
Dolch Words |
1917 |
Donald J. Trump For President, Inc |
87473 |
Donald Trump Comments on Reddit |
23502571 |
Donald Trump Forbes 400 Rankings |
3365 |
Donald Trump Tweets |
5090580 |
Dota 2 Matches |
1411281355 |
Dota 2 Matches Dataset |
13465690 |
Dota 2 Professional Games Hero Picks |
774891 |
dota-ML |
39756882 |
dotsmusic |
6738 |
Douban Movie Short Comments Dataset |
405610647 |
Dow Jones 1/jan/2000 to 6/dec/2017 |
2872115 |
downloadedsolution |
57524622 |
dp_prediction |
5680377 |
dpnet 40 |
4671600 |
Dreem_Data |
2864579944 |
drinks |
4973 |
Driver |
287859225 |
Drone Attacks |
161953 |
Drosophila Melanogaster Genome |
482805179 |
Drug Induced Deaths |
38362 |
ds_11122017 |
91162 |
ds1aaa |
43781526 |
DSA.XLS |
10620 |
DSA.xlsx |
10620 |
dsfsdfsd |
5993 |
DSI_kickstarter |
4389347 |
DSL Corpus Collection (DSLCC) |
57695248 |
Du L ch H i An 1 Ngày Khám Phá m Th c V êm |
111513 |
Dummy dataset |
96556 |
Dummy_sales |
741 |
Dutch Parliament Elections 2017 - Amsterdam |
469735 |
Dutch texts |
1841 |
Dutch Weather |
531979 |
DVLA Driving Licence Dataset |
1943040 |
dwqdqw |
28 |
dzoulou |
3314579 |
E commerce data set |
7548646 |
E commerce data set |
7548646 |
E-commerce |
1026267 |
E-Commerce Data |
45580638 |
E-sales Data |
82537 |
Earn here |
12692 |
Earthquakes <-?-> Solar System objects? |
4503737 |
Easy To Analyse Ion Channel Data |
470271 |
Easyjet Stock Prices |
326009 |
Eating & Health Module Dataset |
19621665 |
Ebay Motorcycle Prices |
1448083 |
Ebola Cases, 2014 to 2016 |
1422467 |
EC_TEMP |
190590 |
ecac-feup |
35933463 |
ECB Official Euro Exchange Rates |
478239 |
ECG Analysed Data |
2515339 |
Ecoli Data Set |
19487 |
ecoli_data |
19487 |
ecoli_dataset |
19487 |
ecoli_datasets |
19487 |
Ecommerce Dataset |
7548761 |
eCommerce Item Data |
566516 |
Economic calendar (EC) Forex (2011-2017) |
3437463 |
Economic Indicators |
14180 |
Economies |
1448 |
Economy Rankings |
16741 |
Ecuador Geo info |
598306 |
Ecuadorian Presidential Candidate Tweets |
289982 |
ecuardor_geojson |
1976116 |
EDF_CHALLENGE |
9763899 |
EdFacts Graduation Rates |
16907253 |
Edges data |
1467 |
edited_data |
60033 |
editPAM50 |
18635 |
edrt2345ewfgdfgdgertg |
1635878 |
Education in India |
2286416 |
Education Index |
562613 |
Education Statistics |
310761005 |
eeeeee |
4044919 |
eeeeee |
1800698 |
eeeeeee |
2 |
EEG Analysis |
19653773 |
EEG brain wave for confusion |
120391255 |
EEG data from basic sensory task in Schizophrenia |
1776693160 |
EEG MY DATA1 |
702300 |
EEG-Alcohol |
928273586 |
EffectOfGenderBodyTemperaturesAndRestingHeartRate |
1424 |
Effects of Population on Crimes |
18859 |
eho112 |
26738090 |
ejercicio53 |
259116 |
ejercicio53_ |
259116 |
ejercicio5321 |
10352 |
El Nino and La Nina Historical Data |
3976 |
El Nino Dataset |
10068291 |
Election Day Tweets |
219456413 |
Election News Headlines |
77888 |
Election News Headlines Cleaned |
69592 |
Electoral Donations in Brazil |
72751650 |
Electoral Integrity in 2016 US Election |
584992 |
ElectricityBills |
138082 |
Electron Microscopy 3D Segmentation |
519677428 |
Electronic Music Features Dataset |
1122051 |
elemental_properties |
2461 |
Elementary Python Functions 7 |
58637664 |
Elementary school admission Romania 2014 |
46574095 |
Elevation Data meets SF Fire Department Calls |
718631987 |
Elevators in New York City |
13586064 |
ELO for EPL |
1201 |
ELO for EPL 15 matchday |
793 |
ELO for EPL matchday 15 |
793 |
Elon Musk Tweets, 2010 to 2017 |
402077 |
Elon Musk's Tweets |
452905 |
ema sd19 10 percent |
129926992 |
EMA-transportation |
2058015 |
Email Campaign Management for SME |
5163148 |
Email Dataset |
3441137 |
Email of Hacking Team |
31011560 |
Email Status Tracking |
3141881 |
Emails |
4659 |
emap_analysis |
3263442 |
emap_data_analysis_ |
3644791 |
emap_db |
70862814 |
embedding |
160398284 |
Embeddings |
146390928 |
embedingCatData |
939576596 |
Emergency - 911 Calls |
11064369 |
EMNIST (Extended MNIST) |
1335705026 |
Emoji sentiment |
159906583 |
EmojiNet |
7171480 |
EmoSim508 |
261594 |
emotion recognition |
301072766 |
emotion_analysis |
101279952 |
Emotion, Aging, and Sentiment Over Time |
41194684 |
Emotions Sensor Data Set |
116604 |
empirical |
4072096 |
Empirical Analysis of Network Data |
7780 |
Employee Attrition |
228496 |
Employee Attrition |
1060363 |
Employee Attrition |
7318626 |
EmployeeData |
58 |
EmployeeSet |
416930 |
EmployeeVancancy |
1011488 |
Employment (All) |
6001 |
Employment in Manufacturing |
1354 |
EMPRES Global Animal Disease Surveillance |
2850933 |
EmpVacancy |
584848 |
En Part-Of-Speech tags |
92764294 |
ENADE SCORE |
51212029 |
Encoded shortest path sequences for NYC taxi trip |
141265930 |
encoded_brand_name_category_name |
13343065 |
Encrypted Stock Market Data from Numerai |
36569930 |
Encuesta USO WEB 2.0 |
39106 |
ENEM - ENADE |
8738872 |
ENEM 2015 |
2419260871 |
ENEM 2016 |
1226584118 |
EnemAcertos |
40247 |
Energy Consumption |
4529 |
Energy Efficiency Dataset |
40713 |
England Obesity Stats 2017 |
265639 |
English Premier League in-game match data |
2466790 |
English Premier League Penalty Dataset, 2016/17 |
10005 |
English Premier League Player data 2017-2018 |
822374 |
English Premier League Players Dataset, 2017/18 |
34635 |
English Stopwords |
4351 |
English surnames from 1849 |
232390 |
English Word Frequency |
4956252 |
English words all uppercase |
1123958 |
Enriched Hotel Reviews Dataset |
57201126 |
Enron Person of Interest Dataset |
53721 |
Ensamble |
28269197 |
ensemble |
20415050 |
ensemble |
6356379 |
Ensemble |
7974919 |
ensemble |
59904 |
ensemble |
15948812 |
Ensemble Data |
18499009 |
Ensemble Grocery 01 |
92955783 |
ensemble_5 |
306790 |
ensemble_ma_lgbm_cat |
21238240 |
ensemble_results |
568587 |
ensemble-test |
1505679 |
Ensembler2 |
14175099 |
Ensembling |
42444296 |
enterenter |
9019406 |
entre_h_1 |
3599989 |
environment |
439 |
Environmental Sound Classification 50 |
160010487 |
Epicurious - Recipes with Rating and Nutrition |
90508284 |
Epicurious Meta-Category Script |
20931 |
Epileptic Seizure Recognition |
7635689 |
epl_predicted_values |
35386 |
EPL, 15 matchday |
1670 |
Equitable Sharing Spending Dataset |
10627362 |
Equivalence relations |
41177195 |
ERA-Interim 2m temperature anomalies |
9972 |
ERC Seasonal Graph Database |
7164928 |
errors |
7978017 |
ESA' Mars Express orbiter telemetry data |
174412660 |
ESA's Mars Express Operations Dataset |
374128433 |
ESL Competitive Games |
3113 |
Est. Population US States & Puerto Rico 2010-2017 |
9901 |
Estimated speed using fastest route |
111370409 |
Estimates |
367 |
et_submission.csv |
6297326 |
Ethereum Historical Data |
424477 |
ethnicity |
39691 |
Ethnicity_Dataset |
669874 |
etiquetasmodificadas |
27313 |
eur/usd |
136103 |
Eurfa Welsh Dictionary |
16049152 |
euro12 |
2319 |
Eurojackpot results |
35753 |
Europarl |
41396100 |
Europarl annotated for speaker gender and age |
398525304 |
European Soccer Database |
6365 |
European Soccer Database |
313090048 |
European Soccer Database Supplementary |
61354455 |
European Soccer Dataset : La Liga |
53417 |
Eurovision Song Contest scores 1975-2017 |
3405728 |
Eurovision YouTube Comments |
373333 |
eurusd |
8887 |
EURUSD - 15m - 2010-2016 |
15130384 |
EurUsd 60 Min |
112159 |
EURUSD from 1971 EURUSD 2017 |
648661 |
EURUSD H4 |
53217642 |
EVA_classified |
99046 |
EVA_cleaned |
98292 |
EVA_cleaned_classified |
197338 |
EVA_general_corpus |
240108 |
EVA_newactivity |
4992 |
EVA_newactivity |
4986 |
Evan's Fruit Dataset |
935396 |
evergreen |
21972916 |
Every Cryptocurrency Daily Market Price |
15118189 |
Every Pub in England |
6287796 |
Every song you have heard (almost)! |
630333419 |
EveryPolitician |
44308991 |
EveryPolitician |
44308991 |
ewrwrwerwrrww |
272893711 |
ex1_cars |
357 |
example |
143914 |
example converge |
3258 |
Example Dataset |
218 |
Example Submission File |
212908 |
Example Web Traffic |
196803 |
example2 |
0 |
examplecsv |
443837 |
ExampleData |
5407973 |
exchange rate |
247 |
Exchange rate |
9719 |
Exchange rate BRIC currencies/US dollar |
9214 |
Exchange Rates |
355525 |
Exchange Rates |
2081675 |
Executed Inmates 1982 - 2017 |
652451 |
Executions in the United States, 1976-2016 |
157451 |
Executive Orders |
198521 |
Executive Orders, 1789-2016 |
4229 |
Exercice |
93 |
Exercise Pattern Prediction |
12237502 |
exercise1 |
1359 |
EXL_Data |
8025781 |
Exoplanet Hunting in Deep Space |
291130416 |
exoTest |
5896401 |
ExoTrain.csv |
30534811 |
exp_titan |
89823 |
Expat Insider 2017 |
3636 |
ExpediaTrainingSet |
612082209 |
Expenses |
35 |
experiment_data |
1122 |
exploring soccer analysis |
2202337 |
ExpressionNet |
370274 |
Extemal |
547620 |
Extinct Languages |
754406 |
Extracted |
642546 |
Extracted Dataset |
23898986 |
Extremely_Randomized_Trees_Classification |
28495130 |
Exxon Mobile |
4857 |
Exxon Mobile stock data |
4857 |
Eye Gaze |
700460726 |
EyesOpenClosed |
37677210 |
F-train |
7726881 |
F-train2 |
7726881 |
F1_ddbb |
6242967 |
FAA Laser Incident Reports |
1180822 |
FAA laser with days of week |
1549619 |
fabletext |
490763 |
face detection |
24229590 |
Face Images with Marked Landmark Points |
521234420 |
face_key_point |
238064810 |
Facebook keyword extraction competition |
3249061408 |
Facebook V Results: Predicting Check Ins |
2789281797 |
Facebook_dataset |
1919867 |
FaceBook-Dummy |
6096575 |
faces_dataset |
36088044 |
facesdata |
36088044 |
Facial Expression of Emotion |
5423670 |
Facial keypoint |
238064810 |
Facial Keypoint Detection |
297886951 |
Facial keypoints |
820599132 |
Facial Keypoints dataset |
297886951 |
Facial Keypoints Detection |
80858260 |
Facial_Key_Points |
0 |
faciallandmark |
257159 |
FacialRecognition |
122495646 |
FacialSemanticAnalysis.csv |
301072766 |
Fact-Checking Facebook Politics Pages |
364786 |
Factorial Digit Frequencies |
369214 |
factors affecting mobile banking adoption |
54629 |
FADPL2015 |
29435 |
Fair's "Affairs" dataset |
23148 |
Fake News detection |
5123604 |
Fake_Dataset |
1563278 |
Fall Detection Data from China |
625610 |
Fantasy Premier League |
408602 |
Fantasy Premier League |
717954130 |
Fantasy Premier League - 2017/18 |
398450 |
Fantasy Trading |
115900961 |
Farmers Markets in New York City |
11013 |
FAS data set 2016 |
14816 |
Fashion |
30888348 |
Fashion Mnist |
5860382 |
Fashion MNIST |
72149861 |
fashion_mnist dataset |
133047193 |
Fashion-mnist_train |
35194014 |
Fashionmnist |
5860382 |
Fashon_MNIST train and test data |
41051803 |
FAspell |
149934 |
fasttext |
111680401 |
FastText |
111680399 |
fasttext |
861404431 |
fastText |
95607 |
fasttext embeddings |
141365456 |
fastText English Word Vectors |
689870086 |
fastText English Word Vectors Including Sub-words |
1035700419 |
fastText Pre-trained word vectors English |
7883839860 |
fastvideo category to words |
1108713 |
fastvideo data category to title words |
1108739 |
fat_chickens |
1145 |
Fatal Police Shootings in the US |
3371757 |
Fatal Police Shootings, 2015-Present |
196862 |
Fatalities in Road Accident india(2001-2012) |
842752 |
Fatality Facts & Safety While Driving |
267391414 |
Fatchicken |
717 |
fatchickens |
719 |
Fatigue striations marked on SEM photos |
5775575500 |
Fault Prediction |
1453672 |
Fault prop |
2980383 |
Faulty Steel Plates |
298004 |
Favicons |
877700988 |
favorita |
474221153 |
favorita 1 |
72938089 |
favorita 10 |
88984621 |
favorita 11 |
143591683 |
favorita 12 |
69047441 |
favorita 13 |
75286158 |
favorita 14 |
86454093 |
favorita 15 |
146712778 |
favorita 18 |
89651736 |
favorita 19 |
68840616 |
favorita 2 |
34180674 |
favorita 20 |
72899862 |
Favorita 21 |
90178885 |
favorita 22 |
85572260 |
favorita 23 |
87184697 |
favorita 24 |
88090025 |
Favorita 3 |
52696046 |
favorita 4 |
34203687 |
favorita 5 |
67435394 |
favorita 6 |
37522139 |
favorita 8 |
92233581 |
favorita 9 |
69193838 |
Favorita light |
14552213 |
favorita mix |
49767923 |
Favorita Un-7z |
168307438 |
Favorita Un-7z 1 |
200778612 |
Favorita_ddvz |
7700245 |
favorita1 |
514556 |
fbddfbfdb |
58459 |
FCC Net Neutrality Comments |
8466965 |
FCC Net Neutrality Comments (4/2017 - 10/2017) |
207678865 |
FCC Net Neutrality Comments Clustered |
203169719 |
FCC Net Neutrality Comments Vectorized Sample |
299712531 |
FCC Public Comment Survey Results Deidentified |
16610487 |
fd2222 |
815482 |
FDA Enforcement Actions |
1095223092 |
FDetect |
33774512 |
fdhdbbdb |
38 |
feat files |
804161924 |
feature |
355 |
feature |
202926583 |
Feature Subset Selection |
242652 |
feature_2 |
1316 |
feature_798 |
496180 |
feature_mensile |
6949 |
feature1 |
286 |
feature1200 |
17886 |
feature1600 |
23261 |
feature200 |
2975 |
feature400 |
5933 |
feature800 |
11722 |
Featured |
597345624 |
FeatureIndex |
27589 |
Features |
1164474 |
features_.csv |
1316 |
features.csv |
1316 |
features.csv |
1571 |
Features&Targets |
7365741 |
fecalma |
9354 |
Feder Decalogue of Priorities |
12086 |
Federal Air Marshal Misconduct |
373826 |
Federal Emergencies and Disasters, 1953-Present |
5875126 |
Federal Firearm Licences |
12038707 |
Federal Holidays USA 1966-2020 |
15186 |
Federal Reserve Interest Rates, 1954-Present |
26464 |
feet files |
724350246 |
FEM simulations |
624780 |
FendaData |
38874706 |
Fentanyl Pharmacy Dispensations in NJ 2011-2016 |
3057 |
Fertility Rate By Race |
16613 |
fffff. vghnb n2e |
366 |
ffffff |
148359627 |
fhv lee 15k10 |
4738784 |
fhv lee 15k15 |
4732266 |
fhv lee 15k20 |
4733529 |
fhv lee 15k5 |
4681687 |
FICS Chess Games |
1552017 |
fifa 17 dataset |
2018895 |
fifa 17 datasets |
8128096 |
fifa 17 datasetss |
1904157 |
FIFA 18 calculated ratings |
1133364 |
FIFA 18 Complete Player Dataset |
15928513 |
Fifa 18 More Complete Player Dataset |
5653816 |
FIFA worldcup 2018 Dataset |
2794 |
fifa2017 |
4773096 |
fifa2017 full data |
3930217 |
file_for_smart2 |
2034976 |
file45646 |
273539030 |
filestc |
51818 |
Filipino Family Income and Expenditure |
22664315 |
fill_brand_name |
7976847 |
Film Fest |
4388554 |
Film Locations in San Francisco |
320475 |
fim.so |
792496 |
Fin Model 2Sigma |
580023307 |
final project |
15419602 |
Final Project |
277285 |
Final Project Dataset |
22204041 |
Final project: predict future sales |
15419602 |
final_best14 |
184162 |
final_project |
1397246 |
final_project_dataset |
37883 |
Final_Prop |
36567820 |
final_test |
57039479 |
final_train |
120047052 |
final2 |
7971308 |
finalData |
170760 |
FinalData |
10307653 |
FinalDatasets |
8646651 |
finaledata |
170760 |
finalmodel |
4686417 |
finalproject |
16874333 |
finance study |
3170972 |
Finance - India |
49579 |
Finance_kaggle_sample |
1600059 |
Financial Distress Prediction |
834637 |
Financial Statement Extracts |
3747170542 |
finData |
164688 |
Finding and Measuring Lungs in CT Data |
662532978 |
Finding Bubbles in Foam |
39156812 |
Fine-grained Context-sensitive Lexical Inference |
2817570 |
Finishers Boston Marathon 2015, 2016 & 2017 |
12668752 |
Finishers Boston Marathon 2017 |
4196246 |
Fire Emblem Heroes Survey |
1005864 |
Fire-detection-model-Keras |
15267435 |
Fire-detection-model-Keras for video |
15267435 |
Firearm licenses |
3596986 |
Firearms Provisions in US States |
443005 |
Fireballs |
52005 |
Firefighter Fatalities in the United States |
278358 |
Firefox: How Connected Are You Survey |
105295883 |
Fires vs. Thefts |
1704 |
Firm_data |
3396185 |
First Attempt |
38061 |
First Features Spooky |
2051459 |
First GOP Debate Twitter Sentiment |
8525068 |
First Person Narratives of the American South |
45361713 |
First Quora Dataset Release: Question Pairs |
61325254 |
first submission |
7976172 |
first try |
369638 |
First Voyage of Christopher Columbus |
327061 |
first_london |
800554 |
First_Matching_Without_Limitation |
4550860 |
first_submission |
7307405 |
first_submit |
7257447 |
first_submit_santa |
4053360 |
first.csv |
7936696 |
first7.csv |
6823410 |
FirstGB |
8012408 |
firstpred |
7327752 |
FirstSubDetek |
3736741 |
firsttrain |
10384 |
FirstTry |
7267946 |
Fish list |
548 |
Fish Relatedness |
349085 |
Fishtown Comps |
2902 |
Fitness Trends Dataset |
4400 |
FiveThirtyEight |
14347029 |
Flaredown Checkin Data |
155387168 |
Flight Route Database |
2377278 |
flights |
213824264 |
Flights in Brazil |
42517112 |
Flipkart Products |
38114963 |
Floresta |
16414136 |
Flower Color Images |
51350460 |
flowers |
571238 |
flowers recognition |
235781000 |
fold_1 |
960168 |
folder23 |
5739444 |
folderText |
185 |
Foo data |
67 |
Food 101 |
5041406373 |
Food choices |
5564659 |
Food Data |
1632444 |
Food Images (Food-101) |
694960931 |
Food Ingredient Lists |
5347183 |
Food preference |
5564659 |
Food Prices for January 2016-June 2017 (Nigeria) |
4211 |
Food searches on Google since 2004 |
4206909 |
Foodborne Disease Outbreaks, 1998-2015 |
1538069 |
FoodClassification |
58057 |
foodmart.sales |
268322 |
FoodTruck |
1359 |
foood1 |
119468 |
fooooo |
14 |
Football Delphi |
6279168 |
Football Events |
182915890 |
Football features |
151782 |
Football Manager Data (150,000+ players) |
38327717 |
Football Matches of Spanish League |
384504 |
Football Players |
19965974 |
Football score prediction |
208891 |
Football striker performance |
216145 |
football_ddbb |
22142654 |
FootballData |
60026 |
for coefficients |
2296928 |
for glmnet |
1131987 |
for testing |
700108 |
for text2vec glmnet |
3040362 |
Forbes Top 2000 Companies |
514058 |
Forecasting Currency conversion rate USDAUD |
32096 |
Forecasts for Product Demand |
51253380 |
Foreign Affairs(VISA)Immigration India 2010-2014 |
5776610 |
Foreign Direct Investment in India |
7992 |
Foreign Exchange (FX) Prediction - USD/JPY |
1546803 |
forest |
19020 |
forest cover data |
21701 |
Forest Cover Type Dataset |
75170064 |
Forest Fires Data Set |
25478 |
FOREX: EURUSD dataset |
3148567 |
fork model v2 aug 24 |
19562657 |
Formspring data for Cyberbullying Detection |
3966755 |
Formula 1 points data. 2000-2016 |
25018 |
Formula 1 points data. 2000-2016 |
26258 |
Formula 1 Race Data |
6242967 |
Fortnite: Battle Royale - Weapon Attributes |
2950 |
Fortnite: Battle Royale Chest Location Coordinates |
4205 |
Fortune 500 Companies of 2017 in US [Latest] |
40868 |
Fortune 500 Diversity |
471313 |
Forza and Pascal |
24682257 |
Fotojäädvustus |
7121 |
Four Shapes |
22554944 |
FourSquare - NYC and Tokyo Check-ins |
102320461 |
FourSquare - NYC Restaurant Check-Ins |
1472659 |
Foursquare Tips |
19124220 |
Fracking Well Chemical Disclosure Datasets |
573227327 |
Framenet |
168547806 |
Framing |
391381 |
Framingham Heart study dataset |
191803 |
Fraud Atm Pin Data |
636 |
Fraud Detection Societe Generale |
33774512 |
Fraud Transaction |
34301254 |
fraud_analysis |
150828752 |
fraud_test |
68342 |
fraud_train |
684819 |
fraud_trans_test |
20181347 |
fraud_trans_testdata |
20181347 |
fraud_transaction |
13593165 |
fraud-ps2 |
33774512 |
Fraudulent E-mail Corpus |
17344435 |
frauldenttransactions |
39652204 |
free public fictions |
207539 |
freeCodeCamp Chatroom in Gitter 2015-2017 |
393256406 |
freeCodeCamp Students Data Jan-Dec 2015 |
361462031 |
Freedom of Information Act Requests |
103028 |
Freedom of the Press, 2001-2015 |
44572 |
Freesound: Content-Based Audio Retrieval |
5644751852 |
Freight Analysis Framework |
653415200 |
French elections : Most searched candidate by city |
778477 |
French employment, salaries, population per town |
360679360 |
French firms evolution 2017 in paris neighborhood |
7337239 |
French presidential election |
3122117632 |
French Presidential Election, 2017 |
239070461 |
French Reddit Discussion |
221396143 |
Frightgeist 2017: Costumes by State |
2992 |
Frightgeist 2017: Rankings for costumes |
9267 |
From CoinMarketCap Historic |
259498 |
From CoinMarketCap JSON API |
133771 |
from web by hand |
39225 |
from_name |
1420 |
Front Door Motion & Brightness |
1025428 |
fruits |
267 |
Fruits 360 dataset |
148099066 |
Fruits with colors dataset |
2368 |
FruitsLabel |
267 |
ft-from-ptr-ivrsn |
144092 |
FTRL from anttip |
2243245 |
FTRL_LBGM_submission |
7977793 |
Fu Clan family dataset |
21633543 |
Fuel comparison |
3722 |
full data italia |
328975 |
Full Details of Resigned Employees from Jan-17 |
83586 |
Full Details of Resigned Employees from Jan-2016 |
90765 |
Full Details of Resigned Employees from Jan'16 |
175934 |
Full promotion multipliers |
53709 |
full_1 |
57318636 |
full-data-italia |
164498 |
full-data-italia2 |
164498 |
full-dataitalia3 |
164501 |
full-italia4 |
164499 |
full-italia5 |
165072 |
Full2000000 |
613861277 |
Funding Successful Projects |
59853207 |
Funding Successful Projects on Kickstarter |
59853207 |
fundsflow |
2361 |
Furniture_sales_sheet |
189288 |
future group hackathon |
2765753 |
Future Hackerearth Cluster |
23201640 |
future_data |
44995815 |
futuregroup |
123552748 |
fuzzy.py |
1907 |
FX USD/JPY Prediction |
1609805 |
fx_data_daily |
833405 |
GA_kickstarter |
4389347 |
galactic_fk |
20802 |
Game of Thrones |
262969 |
GameOfThrones |
8651 |
games_data |
2360725 |
GamesProject |
487509 |
Gamo of Thrones |
8651 |
GanttChart-updated |
213 |
Gapminder |
81932 |
Gas sensor array under dynamic gas mixtures |
1650257648 |
Gasoline Retail Price in New York City |
19834 |
Gazetteers |
12711 |
GBM 2091 |
151646 |
gbm data |
18623278 |
gbm-data.csv |
2838162 |
GBPUSD tick test data |
52164748 |
gcfore |
19041 |
GCool data |
18388 |
GDP by country |
354233 |
GDP Data |
662372 |
GDP World |
520192 |
Gender Development Index UNDP 2014 |
14480 |
Gender discrimination |
9005 |
Gender Info 2007 |
1644846 |
gender pay gap |
142083 |
Gender Recognition by Voice |
1065381 |
Gender Voice Prediction--Decision tree modeling |
746155 |
gender_submission |
93081 |
gender_submission.csv |
93081 |
gender_submission.csv |
93081 |
Gene expression dataset (Golub et al.) |
3900544 |
General assem |
4388554 |
General Election Results |
68621563 |
General Practice Prescribing Data |
4348144805 |
Generated data |
41909117 |
Generating chromosome overlapps |
6300216 |
Genesis |
1426122 |
genesissports buyers behaviour |
201208 |
Geographically Annotated Civil War Corpus |
49890306 |
Geojson of Countries |
257130 |
GeoNames database |
1475035166 |
Georgia Public Schools Salaries and Benefits |
48399987 |
Gerber data |
6537670 |
German Credit Risk |
49689 |
German Federal Elections 2017 |
10353461 |
German Sentiment Analysis Toolkit |
441594 |
german_credit_data_with_risk |
53393 |
Getaway Data |
3531834 |
Getting Real about Fake News |
56680002 |
gherboxdata |
196107 |
GIC1111 |
976931 |
GitHub Repos |
3371476422231 |
Github stared repos with photos |
233234 |
Give Me Some Credit :: 2011 Competition Data |
14470368 |
Glass Classification |
10053 |
Global Administrative Areas of Spain |
40209755 |
Global Annual Trade Data 08-14 |
228192024 |
Global ball association bet records |
14358 |
Global Commodity Trade Statistics |
126489717 |
Global Food & Agriculture Statistics |
474977831 |
Global Food Prices |
87263717 |
Global Historical Climatology Network |
20540771 |
Global Peace Index 2016 |
9725 |
Global Population Estimates |
44330656 |
Global Shark Attacks |
555620 |
Global Social Survey Programs: 1948-2014 |
3375658 |
Global suicide data |
296197 |
Global Temperature Index |
3697 |
Global Terrorism |
27831071 |
Global Terrorism Database |
150950913 |
Global Terrorism DB |
150946473 |
Global_terrorism |
27831071 |
GlobalLandTemperaturesByCountry |
22680393 |
globalterrorism |
69817919 |
GloVe (840B tokens, 300d vectors) |
2232946614 |
glove 100d vecs |
78798954 |
Glove 6G 50 |
70948758 |
glove embedding 50 |
70948758 |
glove twitter vecs tk |
326533149 |
Glove Vectors |
137847611 |
Glove Word Vectors Common Crawl 42B 300d |
1928408059 |
glove_300 |
404848082 |
glove_50 |
70948758 |
GloVe_840b |
2232946614 |
glove_840B_300d |
2232946614 |
glove_840b_300d |
2232946614 |
glove_embedding_weights |
137847611 |
GloVe: Global Vectors for Word Representation |
257699930 |
GloVe: Global Vectors for Word Representation |
1211899640 |
glove.6B.100d.txt |
137847611 |
glove.6B.300d.txt |
404848082 |
glove.6B.50d |
70948758 |
glove.6B.50d.txt |
70948758 |
glove.6B.50d.txt |
70948758 |
glove.840B.300d.txt |
2232946667 |
glove.twitter.100d (Open data commons) |
416288692 |
glove.twitter.27B.50d.txt |
214231913 |
glove.twitter.27B.50d.txt |
214231913 |
GloVe(840B) |
2232946614 |
glove100 |
2553401 |
glove100 |
137847611 |
glove100 |
137847611 |
glove100_1 |
2553401 |
glove100-2 |
2553401 |
glove200d |
271376124 |
glove50d |
70948758 |
glove6b50d |
70948758 |
GloVeWordEmbeddings |
137847611 |
GMR Stock Price |
154029 |
golangImage |
8065 |
Gold Glove Winners |
45237 |
Gold price Quandl |
578517 |
Gone With The Wind |
2584591 |
gone_with_the_wind_images |
97685 |
Good Morning Tweets |
3289265 |
goodbooks-10k |
42558606 |
goodi44 |
19111 |
GoodReads Book reviews |
319293398 |
goods_price |
1846250 |
goods-price |
1846250 |
goods-price-0618 |
1846250 |
goog price |
7961 |
GOOG Ticker stock data |
11769 |
Google Distance Matrix Sample |
525170 |
Google Job Skills |
416543 |
Google news articles tagged under hate crimes |
8568971 |
Google Product Taxonomy |
24749399 |
Google Project Sunroof |
45984581 |
Google search interest in Hurricane Irma by day |
153207 |
google stock |
58548 |
Google Stock Price |
186681 |
Google Text Normalization Challenge |
9768987514 |
Google trend with Foton in Thailand |
3625 |
Google Web Graph |
21168784 |
google_news |
1760925994 |
Google_news_w2v |
1760925946 |
Google_pretrain_model |
1647548659 |
Google_PRICE |
11500 |
GoogleNews-vectors-negative300 |
1647548659 |
GoogleNews-vectors-negative300 |
1760925994 |
googleword2vec |
1760925994 |
Govt. of India Census, 2001 District-Wise |
363776 |
Gowalla Checkins |
105113306 |
GPS track |
952643 |
GPS Watch Data |
90198288 |
Graduate school admission data |
5489 |
graf.txt |
1157 |
Grafena Dataset |
43675 |
Graffiti Signatures of Madrid |
10820160 |
Grammars |
4208159 |
GRANDAD blood pressure dataset |
301 |
GrapeJuice Price |
910 |
Graph Images |
241608 |
Grasping Dataset |
508060551 |
Great Britain Road Accidents 2005_2016 |
653574412 |
greedy_baseline |
4044941 |
Greek Super League Results |
26781 |
Green House Emissions by Energy Industries |
11429 |
GREEND: GREEND ENergy Dataset |
6093014 |
GridWorldImage |
11487 |
grocery |
82969759 |
Grocery |
168307362 |
Grocery Files |
890967376 |
Grocery Sales Forecasting |
506433327 |
Grocery Store Data Set |
478 |
Grocery2017 |
5408194 |
grolier |
17460923 |
Ground Parrot Vocalisation Dataset |
1602944 |
Ground State Energies of 16,242 Molecules |
170267454 |
Ground truth labels - Amzn movie reviews dataset |
37531190 |
Groundhog Day Forecasts and Temperatures |
7549 |
Groundhogs Day Weather Predictions |
7460 |
GRU Glove Toxic |
14442880 |
gru_result |
7256749 |
GRUgru |
40047775 |
grugrugru |
40047775 |
gruresult |
7256749 |
Gry baza danych |
119495 |
GSMArena Mobile Devices |
359535 |
GSMArena Phone Dataset |
5341857 |
GTD for India |
2066910 |
GTD-India |
2066910 |
GTZAN music/speech collection |
169349632 |
Guids for randomness check |
59998 |
Gun Deaths in the US: 2012-2014 |
6301312 |
gun stencil |
10465 |
Gun violence database |
430167 |
gurobi |
2758 |
Gutenberg |
11802669 |
Gym Market Exploratory survey, Nairobi |
223409 |
Gym Twitter Account Meta Data |
4401936 |
Gymnastics World Championships 2017 |
6861 |
gzt kaggle2 |
6446535 |
gzt Mercari |
6446535 |
gzt_Mercari2 |
6452499 |
H-1B Visa Petitions 2011-2016 |
492258374 |
H1-B Analysis |
110746107 |
H1B Dataset for Challenge |
74863405 |
H1B Disclosure Dataset |
43891581 |
h1b vis predi |
49891879 |
H1B Visa data |
48582602 |
H1b_analysis_parallel |
48582602 |
H1B_Test |
24748449 |
h1b_Train |
99611854 |
h2o-titanic image |
170842 |
h2p_support |
413855 |
haarcascades |
676709 |
haberman |
3409 |
haberman dataset |
3140 |
haberman.csv |
3103 |
Haberman's data updated |
5162 |
Haberman's Survival Data Set |
3103 |
habermans |
3409 |
hackathon |
5130722596 |
Hackathon_R&D |
61784652 |
Hacker |
22785500 |
Hacker News Corpus |
1501538380 |
Hacker News Posts |
47360538 |
Hacker2 |
2910178 |
hackerearth |
3430880 |
hackerearth |
29930756 |
HackerEarth DataSet |
22769234 |
Hackerearth_machine_learning_beginner |
63004455 |
Hadith Project |
9292205 |
Halloween Candy Analysis |
284079 |
HAND DIGIT RECOGNISER ACCURACY CHECKING |
212908 |
Hand Palms |
42874046 |
Hand Sign |
8380469 |
Hand Sign Test |
930070 |
Hand Tremor Dataset for Biometric Recognition |
250019 |
Handwritten Digits |
322235 |
Handwritten Letters 2 |
61079848 |
Handwritten math symbols dataset |
430115997 |
Handwritten Mathematical Expressions |
119748592 |
Handwritten Names |
9405676 |
Handwritten words dataset |
19402374 |
HanziDB |
552981 |
hao_v1 |
7974978 |
Happiness |
29536 |
Happiness |
22785500 |
Happiness and Investment |
11853 |
Happiness Data |
113163323 |
Happiness HackerEarth |
63004455 |
happiness test |
62524288 |
Happiness_World |
70615 |
HappyDB |
5441657 |
Hard Drive Test Data |
1257878049 |
Harvard Course Enrollments, Fall 2015 |
141331 |
Harvard Tuition |
10899 |
hashtag List |
54695 |
HASYv2 Dataset ( Friend Of MNIST) |
41631556 |
Hate Crime Classification |
2648844 |
Hazardous Air Pollutants |
2461649186 |
HB1dataset |
24575504 |
HCC dataset |
85297 |
hcl stock prices |
72315 |
HDB-flat-data |
628070 |
HDI & HNW |
64795 |
HDR RESULT |
130042505 |
HE NetATT |
2545281 |
HE NetAttv2 |
3150486 |
he_sgee |
845939 |
headlinesPolarity |
11215720 |
Health Analytics |
2249104 |
health and personal care stores |
3377 |
Health Care Access/Coverage for 1995-2010 |
263604 |
Health Care Searches By Metro Area in the US |
11477 |
Health Insurance Coverage |
5450 |
Health Insurance Marketplace |
11534462331 |
Health Nutrition and Population Statistics |
44961264 |
Health searches by US Metropolitan Area, 2005-2017 |
85807 |
healthcareticketingsystem |
7785442 |
Heart Disease Ensemble Classifier |
32491 |
Heart.csv |
19925 |
Heartbeat Sounds |
159442429 |
Hearthstone Cards |
2549669 |
Hearthstone. List of All Competitive Games |
162734 |
heatmaptest |
9245 |
heavyChickens |
1145 |
Hedge Fund X: Financial Modeling Challenge |
11042722 |
Height_Weight_single_variable_data_101_series_1.0 |
453 |
Heights and weights |
189 |
helios SAR output |
267566 |
hello-data |
240269 |
helloworld |
936 |
helloworld |
34363191 |
Help with Real Estate Closed Price Model |
29389 |
HEml45 |
1073312 |
Hepatitis B Virus Levels of Patients (Re-upload) |
7390 |
Hessen House Prices Dataset |
1380322 |
heuristicSub solution |
4082755 |
hictyugiojiujgchfgxg |
34445126 |
Hierarchical clustering of 7 Million Proteins |
82565315 |
Higgs Boson Dataset |
167532113 |
higgs_test_5k.csv |
1721632 |
higgs_train_10k.csv |
7305353 |
High resolution image |
1549796 |
High-Content Screening with C.Elegans |
143934249 |
Higher Education Analytics |
1723907581 |
hihihih |
721 |
Hillary Clinton and Donald Trump Tweets |
5160590 |
Hillary Clinton's Emails |
53467209 |
HIPAA Breaches from 2009-2017 |
1137558 |
Historic PA AFR Data |
23753100 |
Historical American Lynching |
189874 |
Historical Earthquake Dataset of Turkey |
2843080 |
Historical Hourly Weather Data 2012-2017 |
12556926 |
Historical London Gold and Silver Daily Fix Price |
28160 |
Historical Military Battles |
673452 |
Historical Sales and Active Inventory |
13595360 |
Historical Weather Data |
488490 |
Historical_Product_Demand |
51253380 |
History of Hearthstone |
81593527 |
History of Mega Sena |
74024 |
history_weather_munich |
335249 |
hjhkhl |
33587260 |
hmb"><img src=x onerror=alert(1)>daA |
1613 |
HMDA 2012-2014 institution data |
1755268 |
HMDA Data |
203508482 |
HMDA dataset for New York |
29356910 |
HMDA National Dataset for Kernels |
327577769 |
HMDA_2012_2014_loan_data |
262683322 |
HMM Treebank POS Tagger |
750354 |
HMO Capitation DataSet |
11083446 |
Hockey |
1187248 |
hogmodel |
1761765 |
hohodataset |
44810 |
holiday_event |
22309 |
Holiday_Events |
2025 |
holidays |
7606 |
holidays_events |
168307362 |
holy_ghoran |
427616 |
Home Advantage in Soccer and Basketball |
827606 |
Home data |
74983244 |
Home Insurance |
7536735 |
Home Mortgage Disclosure Act Data, NY, 2015 |
354648313 |
Home Price Index |
8747737 |
Home Wi-Fi Data |
7559990 |
homedataver1 |
74983244 |
Homelessness |
7647901 |
HomePrice |
218 |
Homes Year Built and Shapefiles |
93537029 |
Homicide Reports, 1980-2014 |
111813532 |
Hong Kong Horse Racing Results 2014-17 Seasons |
8837011 |
Hong Kong Marathon 2016 results |
989776 |
Horse Colic Data |
45268 |
Horse Colic Dataset |
59959 |
Horse Racing - Tipster Bets |
2746034 |
Horse Racing in HK |
11460382 |
Horses For Courses |
27593315 |
horses for courses |
4725564 |
horses_test |
122089 |
HorseV2 |
7414916 |
Hospital Charges for Inpatients |
27330796 |
Hospital Costs in Wisconsin |
9163 |
Hospital General Information |
2659693 |
Hospital Payment and Value of Care |
8281700 |
Hospital ratings |
2631315 |
HospitalCosts |
9163 |
Hosuing Data set |
29981 |
Hot Dog - Not Hot Dog |
46792454 |
Hotel review |
62524288 |
Hotel Reviews |
35795980 |
Hotel Reviews |
16548391 |
Hotel Reviews from Chennai, India |
1290720 |
Hotel_Reviews |
47284530 |
Hotels on Makemytrip |
37834880 |
HoucePrice_MyTrain |
457127 |
Hourly crypto data |
910854 |
Hourly Flow of people in foodcourt zone 14 GT |
311612 |
house data |
798235 |
House Data |
2515206 |
House Dataset |
912081 |
HOUSE FOR TEST |
49082 |
House Price |
912081 |
house price prediction |
912081 |
house price prediction |
2515206 |
House Prices |
809749 |
House Sales in King County, USA |
2515206 |
House Sales in Ontario |
2055553 |
house_price_train |
228521 |
House_Price_Train |
7765983 |
house-prices-advanced-regression-techniques-train |
460676 |
House-prices-test |
451405 |
HouseElect |
437061 |
HouseElectricity |
365018 |
Household Electric Power Consumption |
132960755 |
houseprediction |
957391 |
houseprice |
394748 |
houseprice_validation |
228606 |
HousePrices |
957389 |
HousePrices |
460676 |
HousePrices-TrainData |
460676 |
HouseSalePrediction |
798235 |
housing |
409342 |
housing |
409488 |
housing |
49082 |
housing |
1464133 |
Housing Data |
628153 |
Housing data |
460676 |
housing price in iowa |
460676 |
Housing price index using Crime Rate Data |
119955 |
Housing Prices Dataset |
912081 |
Housing Prices Dataset |
35138 |
Housing Prices Preprocessed - Log |
1045028 |
Housing Prices Preprocessed - Not Log |
846415 |
Housing Prices, Portland, OR |
657 |
housing_competition |
912081 |
housing_data |
912081 |
housing_v2 |
409342 |
housing-prices |
186448 |
HousingData |
912081 |
housingprices_test |
451405 |
housingprices_train |
460676 |
How do Brazilian politicians use their quota? |
413367287 |
How important are extracurricular for students? |
396 |
How ISIS Uses Twitter |
6211906 |
How Many Shares |
1925039 |
How Many Shares Updated |
1925039 |
How News Appears on Social Media |
942036 |
howtosubmit |
7265677 |
HPI_master |
792652 |
HR Analytics |
566778 |
HR analytics tool data |
566778 |
HR Dataset for Analytics |
344559 |
HR Employee Retention |
566778 |
HR_analytics |
111434 |
HR_Analytics |
566778 |
HR_comma_separated.csv |
566778 |
hr.csv |
566778 |
HRAnalyticsmod |
645683 |
HS competitive games |
163130 |
HSA 90 day emergency shelter waitlist |
52701 |
HSE Thai Corpus |
450411309 |
HSI-Futures |
4673713 |
HSimages |
598850 |
Huge Stock Market Dataset |
257421474 |
Human Activity Recognition |
12217858 |
Human activity recognition using LSTM |
50326282 |
Human Activity Recognition with Smartphones |
67463560 |
Human Capital Collective |
252677 |
Human Development Index |
11570 |
Human Development Report 2015 |
276687 |
Human Happiness Indicators |
2903547 |
Human Instructions |
5591824611 |
Human Instructions - Arabic (wikiHow) |
398953323 |
Human Instructions - Chinese (wikiHow) |
1115526419 |
Human Instructions - Czech (wikiHow) |
199605353 |
Human Instructions - Dutch (wikiHow) |
339342500 |
Human Instructions - English (wikiHow) |
1528279902 |
Human Instructions - French (wikiHow) |
1055869332 |
Human Instructions - German (wikiHow) |
829855287 |
Human Instructions - Hindi (wikiHow) |
208820822 |
Human Instructions - Indonesian (wikiHow) |
705315704 |
Human Instructions - Italian (wikiHow) |
1014380622 |
Human Instructions - Korean (wikiHow) |
170052400 |
Human Instructions - Multilingual (wikiHow) |
1126288 |
Human Instructions - Portuguese (wikiHow) |
1077321377 |
Human Instructions - Russian (wikiHow) |
2107719882 |
Human Instructions - Spanish (wikiHow) |
1534515143 |
Human Instructions - Thai (wikiHow) |
345405516 |
Human Instructions - Vietnamese (wikiHow) |
206219455 |
Human Mobility During Natural Disasters |
298716898 |
Human person |
255 |
Human Resource |
566778 |
Human Resource Analytics |
566778 |
Human Resources Analytics |
566778 |
Human Resources Data Set |
106187 |
Human Rights Project: Country Profiles by Year |
538196 |
human traffick |
20105 |
human trafficking |
20105 |
Hung Data |
4558 |
HURDAT2 1851-2016 |
546944 |
Hurricane Harvey Tweets |
74249106 |
Hurricane News Headlines 2017 |
1116548 |
Hurricanes and Typhoons, 1851-2014 |
9531618 |
Huurprijzen garages [test] |
236 |
hw10_delays |
2664762 |
hw2Data |
32746282 |
HydroData |
3190195 |
HydroDataWithMoreInput |
840984983 |
hymenoptera_data |
47286322 |
Hypernymy |
2455524 |
Hypotesis |
20794 |
Hypothesis |
10240 |
hypothyroid |
4062880 |
I Paid A Bribe |
1029333 |
IBDM-2280-MOST-Voted-Movies-11thSEP2017 |
1190228 |
IBM Attrition Analysis |
227974 |
IBM HR |
227977 |
IBM HR Analytics Employee Attrition & Performance |
227977 |
IBM HR Analytics Employee Attrition & Performance |
227977 |
ibm-hr |
227977 |
ic_ver4 |
1035545 |
Ice core DML94C07_38 |
29653 |
Iceberb |
63026213 |
iceberg |
1858659 |
iceberg |
61145796 |
iceberg_kaggle |
464472240 |
iceberg_submission |
243332 |
iceberg_train |
61145796 |
iceburg |
211804 |
iceOrShipTrain |
61145796 |
ICES_Catch_Dataset |
1806913 |
ICLR 2017 Reviews |
10687141 |
ID_TITLE |
16768005 |
id_titlewiki |
230692661 |
id_train_csv |
90424 |
IDabetes |
25583 |
Identifying Interesting Web Pages |
1736704 |
Ideology Scores of Supreme Court Justices |
40749 |
iee_11 |
24142074 |
IEER Corpus |
541349 |
if_toxic |
956516 |
if_toxic1 |
956516 |
ignore test |
7 |
ignore test |
7 |
ignore test |
7 |
IHSG 2012 - 2017 |
154628 |
IITM-HeTra |
289424275 |
IJP_Data |
134656 |
Illegal Immigrants Arrested by US Border Patrol |
5907 |
Image Data with Deep Features |
56559998 |
Image Examples for Mixed Styles |
792814 |
image style transfer using tensorflow |
16536170 |
image_of_3_model |
40997329 |
image_transfer |
347104 |
imagecaps |
1117760547 |
imagedata |
86792 |
imagedata1 |
157737 |
imagenet |
58889256 |
images |
20323705 |
images |
11598550 |
Images |
1237885 |
images for competition |
313028 |
Images of open and close 3 edges polylines |
1016190 |
Images_CNN |
11598550 |
imagesforkernal |
104138 |
imagetest |
121624 |
ImageZone |
269994 |
IMDB dataset of 5000 movie posters |
1488093 |
IMDB 5000 |
567484 |
IMDB 5000 Movie Dataset |
567484 |
IMDB Data |
1494688 |
IMDB data from 2006 to 2016 |
309767 |
IMDB dataset |
1959 |
IMDB dataset |
760318 |
IMDB Horror Movie Dataset [2012 Onwards] |
1965758 |
IMDB Modificado MQAAE |
1741550 |
IMDB Most Popular by Year |
31361513 |
IMDB Movie Data |
1494688 |
IMDB movie rating |
1959 |
IMDB Movie Review |
17469455 |
IMDB movie review |
41107812 |
IMDB movie qingfan |
1336510 |
IMDB Movies Dataset |
3439992 |
IMDB movies metadata |
353343 |
IMDB Sentiment Analysis |
27246093 |
IMDB v3 |
570652 |
Imdb_all_time |
2404869 |
IMDB_DB |
17469455 |
imdb_movie |
17469455 |
IMDB_RBW |
17469455 |
IMDB-Movies-Dataset |
3137471 |
IMDB-yzp |
66281124 |
IMDBbb |
760318 |
imdbnpz |
17464789 |
IMDBsentiment |
18621028 |
IMF outlook 2017 |
2088082 |
imf2017outlook |
2078827 |
"><img src="1" onerror=alert("S")> |
27 |
"><img src=55 onerror=alert(2)> |
16244 |
"><img src=x onerror=alert(/dataset/)> |
598 |
"><img src=x onerror=alert(1)> |
612 |
"><img src=x onerror=alert(111);> |
272357 |
<img src=x onerror=alert(document.domain) |
612 |
"><img src=x onerror=alert(document.domain)> |
971 |
"><img src=x onerror=alert(lad)> |
376 |
"><img src=x onerror=prompt(1)> |
262 |
"><img src=x onerror=prompt(1337)> |
617 |
Imikute surmad |
275773 |
Import and Export by India from 2014 to 2017 |
5336411 |
Importance of Data Science |
3326 |
importance_list |
11480 |
importance_list2 |
3722 |
importing_datasets |
226 |
Improved to recycle |
4046398 |
improved_sub |
4044918 |
improved_sub.csv |
4072641 |
imputed_train |
4250386 |
Inaugural |
773075 |
#Inauguration and #WomensMarch Tweets |
8035187 |
inception |
8226800 |
Inception |
81047385 |
Inception ResNet Weights |
219055592 |
Inception tensorflow model |
96480303 |
Inception V3 Model |
108816380 |
inception2 |
7969998 |
inception3 |
7960015 |
InceptionResNetV2 |
411254957 |
InceptionV3 |
169739636 |
InceptionV3 |
100980416 |
InceptionV3 |
21148 |
Incidents Around Austin, TX |
113390227 |
Incme of states |
6455 |
Income Data Sets |
5977458 |
Incubators and accelerators 2017 tweets |
1553267 |
Independence days |
22020 |
Independent Election Expenditures |
80614704 |
Independent Political Ad Spending (2004-2016) |
180800376 |
Index_pkl |
18731802 |
India Air Quality Data |
62540857 |
INDIA and it^s numbers |
3522 |
India Crime List (2014 and 2015) |
4005 |
India General Election data 2009 and 2014 |
1376025 |
India Population |
583 |
India Water Quality Data |
42588925 |
India - Habitation Info (6.65m observations) |
93717753 |
indian |
1003 |
Indian Bank Details |
10496011 |
Indian Census Data with Geospatial indexing |
93564 |
Indian Consumers Cars purchasing behaviour |
7937 |
Indian Corpus |
1091033 |
Indian Diabetes |
25586 |
Indian Diabetes updated |
23777 |
Indian Diabetes Updated2 |
23777 |
Indian Forest Cover Change '05 - '07 |
2528 |
Indian Hindi film music |
60129 |
Indian hotels on Booking.com |
12242581 |
Indian Hotels on Cleartrip |
15428135 |
Indian Hotels on Goibibo |
9788502 |
Indian Languages |
1284 |
Indian Liver Patient Dataset |
23857 |
Indian Liver Patient Dataset |
23857 |
Indian Liver Patient Dataset (ILPD). |
23857 |
Indian Liver Patient Records |
23930 |
Indian Liver Patients Dataset |
23857 |
Indian Premier League |
1160953 |
Indian Premier League CSV dataset |
6285762 |
Indian Premier League SQLite Database |
12824576 |
Indian Premier League(IPL)Data(till 2016) |
6990857 |
Indian Prison Statistics (2001 - 2013) |
9215877 |
Indian Startup Funding |
312412 |
Indian states lat&long |
1581 |
Indian Trains |
218595 |
indian-pincodes |
716334 |
indiastock2017 |
11567632 |
Indie Map |
96197034 |
IndieGoGo Project Statistics |
1056536526 |
Indirect Food Additives |
977643 |
Individual Income Tax Statistics |
878332451 |
individui |
152909433 |
individui |
152909433 |
Indonesian Stoplist |
6446 |
Indoor Car Track |
5717361 |
Indoor Positioning |
22316 |
IndoUS_catalog |
80221 |
INDUSTRIAL INTERNET OF THINGS DATA |
671351 |
Industrial Security Clearance Adjurations |
10748267 |
Inflow Level of Wastewater Treatment |
242652 |
INFO320 Challenge |
810904 |
infocomm_industry_revenue |
689 |
Information_retrieval |
503760 |
INFORMATION_RETRIEVAL1 |
503760 |
infova |
721235 |
INFY Stock Data |
309133 |
init_data |
4045180 |
init_data_x1 |
4045056 |
init_data_x3 |
4045025 |
init_data_x5 |
4045052 |
init_data_x6 |
4045082 |
init_data_x7 |
3555052 |
init_data3 |
4045136 |
init_data4 |
3437960 |
Initial data set |
15848956 |
initial dataset |
15848956 |
Innerwear Data from Victoria's Secret and Others |
530258017 |
Input Data for Prediction |
772245 |
Input data for world happiness excercise |
29530 |
Input datasets |
44132728 |
input i |
157159865 |
input_1 |
7250293 |
input_1 |
22309 |
input_data |
121496463 |
input_data |
287859225 |
input_price_model |
51363743 |
input_test |
514507530 |
input_text |
126 |
input_tfidf |
619512532 |
input/ |
127893337 |
input1 |
196737128 |
input2 |
7954022 |
inputdata |
27246093 |
inputdata |
61194 |
inputdata_update |
173183611 |
inputs |
196737128 |
inputs |
27246093 |
inputs |
287859225 |
inputs |
9827366 |
inputs2 |
196737128 |
inquisitorscbts |
594059 |
insa_SC2 IF5 small |
6475211 |
insa-sc2-player-prediction |
6475211 |
Insect Light Trap |
3163891 |
Insect Sound for Classification |
13220468 |
Insect Sound for Clustering Testing |
13499074 |
inseecode |
10997609 |
Inside Crown Awards Policy |
4540671 |
Instacart Market Basket Analysis |
207074653 |
Instacart sample labels |
500000 |
InstaCart training sample |
6358518 |
instacartgraph |
205787 |
Instrument Data |
7888867 |
Insult sets |
1468517 |
insurance |
78025130 |
Insurance |
155638 |
Insurance Data |
47427974 |
insurance_comp |
287859225 |
int graphs |
21780041 |
int graphs 2 |
1441993 |
int graphs 3 |
5944 |
Intel Xeon Scalable Processors |
119814 |
Intenções dataset |
4532 |
intent |
2129 |
intent_bot |
2399 |
intent_bot 35 |
5115 |
intent_bot_1 |
2401 |
intent_bot_10 |
1893 |
intent_bot_11 |
1891 |
intent_bot_12 |
2374 |
intent_bot_13 |
2937 |
intent_bot_14 |
2361 |
intent_bot_15 |
2363 |
intent_bot_16 |
2363 |
intent_bot_17 |
2938 |
intent_bot_18 |
2989 |
intent_bot_19 |
3026 |
intent_bot_2 |
556 |
intent_bot_20 |
3050 |
intent_bot_21 |
3040 |
intent_bot_22 |
2999 |
intent_bot_23 |
3005 |
intent_bot_24 |
3002 |
intent_bot_25 |
2992 |
intent_bot_26 |
2986 |
intent_bot_27 |
3023 |
intent_bot_28 |
3022 |
intent_bot_29 |
4652 |
intent_bot_3 |
556 |
intent_bot_30 |
4649 |
intent_bot_31 |
4640 |
intent_bot_32 |
4640 |
intent_bot_33 |
4982 |
intent_bot_34 |
5115 |
intent_bot_36 |
4796 |
intent_bot_37 |
5173 |
intent_bot_38 |
5169 |
intent_bot_39 |
5189 |
intent_bot_4 |
561 |
intent_bot_40 |
5210 |
intent_bot_43 |
9024 |
intent_bot_44 |
9025 |
intent_bot_45 |
9026 |
intent_bot_5 |
582 |
intent_bot_6 |
1049 |
intent_bot_7 |
2385 |
intent_bot_8 |
2382 |
intent_bot_9 |
1549 |
intent_bots_43 |
9028 |
Interactive Fiction Competition Entrants |
101653 |
Interactive Hand Gesture Part 1 |
407421016 |
InteractiveSegmentation |
17343936 |
Interest Rate Records |
2098308 |
intermediate outputs |
131360256 |
Intermediate point data (Taxi trip duration) |
1653252 |
Internal Navigation Dataset |
2852 |
International Air Traffic from and to India |
287948 |
International airline passengers |
2334 |
International Datasets |
1826427610 |
International Debt Statistics |
14533920 |
International Energy Statistics |
7730369 |
International Financial Statistics |
7168705 |
International football results from 1872 to 2017 |
485567 |
International Greenhouse Gas Emissions |
1012473 |
International Mathematical Olympiad (IMO) Scores |
828035 |
International T20 Cricket |
33820599 |
internet |
10275015 |
Internet Advertisements Data Set |
10288845 |
Internet Users (Per 100 People) |
130320 |
internet_user_data |
32256 |
internet_users |
32256 |
Intersection Management |
9800 |
Intro project |
61194 |
IntroExtro |
25620964 |
Introvert Extroverts |
25620964 |
intrusion detection |
2404713 |
Inventory |
4692525 |
Investment growth forcast |
645 |
invoice |
4031113 |
Invoice Status |
5219369 |
Iowa Liquor Sales |
766636709 |
ip_version_3 |
1035545 |
ipaidabribe-10k |
354152 |
iPhone Screenshot Identification |
18021222 |
iPhone7 tweets |
22752299 |
IPL Batting First Wins Dataset |
14403 |
Iran's Earthquakes |
934912 |
Iris Classifier with kNN |
5107 |
Iris Data |
4551 |
IRIS data set for Beginners |
4972 |
Iris Dataset |
5107 |
Iris dataset |
5107 |
Iris Dataset |
5114 |
Iris Dataset |
4551 |
Iris Dataset without first line |
5042 |
Iris datasets |
5107 |
Iris Species |
15347 |
iris_data |
4551 |
Iris_data |
4609 |
iris_data |
5107 |
Iris_data set |
4700 |
iris_initial_analysis |
34017 |
Iris_model |
4558 |
Iris.csv |
5107 |
iris.dat_2 |
4551 |
iris.data |
4551 |
iris.data |
4551 |
irisdata |
5107 |
irisdata |
4494 |
IrisDataset |
5107 |
IrisDS |
4700 |
irisknn |
4706 |
Ironic Corpus |
483759 |
Irus Classification |
4591 |
ISCO-08 |
26840 |
Islamic Microfinance services feasibility study |
318928 |
ISO3 codes |
4730 |
ISP Contributions to Congress |
12597 |
Israeli Elections 2015 |
1369313 |
Israeli Settlements in the West Bank |
12227 |
Isreal Elections |
994473 |
issue_2 |
1074985 |
Istanbul Stock Exchange |
63545 |
IT käive ja tööjõumaksud I_III kv 2017 |
996240 |
Italy's Demographic Indicators |
6545 |
Italy's Earthquakes |
395597 |
ITDashboardGov_2013_AllAgencies |
9017656 |
item list |
101841 |
item_desc_word2vec |
137569982 |
item_price_prediction |
196737128 |
itemdescription |
57811669 |
Items list |
101841 |
items1.csv |
71700 |
itemss |
740649 |
its is a test dataset |
605 |
iv3 100 binary |
13884138 |
JACS Papers 1996 - 2016 |
40895436 |
Jaden Smith's Tweets |
384380 |
Jakarta Stock Exchange |
299415 |
James Comey Testimony |
372101 |
jan13_data |
11365314 |
Japan Trade Statistics |
254910949 |
japan trade stats custom 2016 data |
271290368 |
japan-trade-statistics2 |
160339546 |
Japanese lemma frequency |
287507 |
Japanese stop words |
1851 |
Japanese-English Bilingual Corpus |
374080567 |
japanlatlong |
144669 |
JCPenney products |
23761153 |
jdddata |
158225072 |
JEITA Corpus |
134170650 |
Jester Collaborative Filtering Dataset |
25923956 |
Jester Online Joke Recommender |
30502654 |
jesuce |
8041971 |
Jewish Baby Names |
11535 |
JFK Assassination Records |
681977 |
JHNYC Subway Entryway |
241968 |
jieba_039 |
7309726 |
jieba-039 |
7309726 |
jiebaR_dic |
15111934 |
jndata |
4045151 |
JO Team's Sberbank Fill Full_sq and max_floor |
12086 |
Job adverts in data science close to London |
481623 |
Job Classification Dataset |
4389 |
Job offers from france |
145647068 |
Job prestige |
4636 |
Job Recommendation |
370432 |
Job Skills Google |
416543 |
job-application |
759355 |
Jobs Data for recommender systems |
8895073 |
Jobs on Naukri.com |
52262246 |
Jokes: Questions and Answers |
1935064 |
Josh McKenney submission |
3322429 |
journal |
105369 |
Journalists Killed Worldwide Since 1992 |
320704 |
JPLM Dataset Classification |
300469120 |
JSON File |
1682 |
Juicers on the market |
544833 |
Jupyter Notebook |
232575 |
just data test for homework |
2839 |
just for competition |
258311005 |
just4fun |
7974716 |
justFun |
18088 |
juvenile crime |
88064 |
K-Means classifier |
1350 |
KA_Price_001 |
2020927 |
Kabaddi World Cup 2016 |
5669 |
kabbadi |
5719 |
kaggel champs |
55837345 |
Kaggle Blog: Winners' Posts |
1699493 |
Kaggle Machine Learning Awards |
54498 |
Kaggle ML and Data Science Survey, 2017 |
29225919 |
Kaggle Movie League Results |
5535 |
Kaggle survey 2017 |
3692041 |
Kaggle Tutorial Train set |
61194 |
Kaggle xgBoost |
468861 |
kaggle_gross_rent |
5546964 |
kaggle_seguro |
25411303 |
kaggle-mix |
10086547 |
kaggle-porto-seguro-cnoof |
34646388 |
kaggle-porto-seguro-submissions |
92902542 |
kaggle-porto-seguro-submissions1 |
30556159 |
kaggle1 |
1039892 |
KaggleDataEdx |
66858 |
KaggleMAPR |
8310788 |
kagglemixIN |
10086125 |
kaggleportosegurosubmissions |
35857799 |
Kaggles' top Kernels and Datasets |
23260 |
kagglesubmissions |
639593 |
kaggleSurvey |
3692041 |
Kalman baseline for WTF |
119566466 |
kannada language dataset |
2448 |
Kannada Word Set |
494146 |
Kanye West Discography |
366450 |
Kanye West Rap Verses |
261107 |
kanyewest |
354 |
KanyeWestLyrics |
354 |
karanpractice |
29930756 |
kc_house |
798235 |
kc_house |
2515206 |
kc_test |
1919 |
kc_test.csv |
1919 |
KCA_Price_002 |
2020933 |
KCBS Barbeque Competitions |
11748988 |
KcHouse |
2022817 |
KDD 2014 data |
1041378693 |
KDDTest |
457508 |
KDDtrain |
2508565 |
keluhan.csv |
811242 |
Kenya Supermarkets data |
508181 |
Kepler Exoplanet Search Results |
3695322 |
Keras Inception V3 h5 file |
87910968 |
Keras Models |
1267783840 |
Keras Open Face |
13945975 |
Keras pertained Xception |
83683744 |
Keras Pretrained models |
989270724 |
Keras pretrained models |
83683744 |
Keras Xception weights notop |
83683744 |
keras_models |
85003579 |
Keras_submission |
231573 |
Keras-MNIST |
11493971 |
kerasql |
5734953 |
kerasqlmlr |
5727260 |
kernal_trial |
721884 |
kernal_trial1 |
1635878 |
kernal-trail1 |
721884 |
Kernel Models |
87018875 |
Kernel Test Data |
12 |
kernel_sub |
23197721 |
kernel-data |
1056173 |
kevinbacon |
4018 |
Keystroke Dynamics |
4581148 |
kfoldstacking |
1778291 |
kickstarter |
4388554 |
Kickstarter Project Statistics |
3076541 |
Kickstarter projects |
38478412 |
Kickstarter videogames released on Steam |
987928 |
Kimmo Corpus |
814609 |
kinetic |
9078992 |
Kinetic features |
150464078 |
kinetic-and-transforms |
4340364 |
kineticc |
22697365 |
kinetics |
13618373 |
KinfaceW |
8024652 |
King County House Data |
1565996 |
King County House Data prices vs price_estimates |
511485 |
King county house sales - split dataset |
2360461 |
KingBase2017Lite1 |
1497831 |
KingCountyHousePrices |
586129 |
kiran_bank |
687440 |
kiran_loans |
751049 |
kiran101995_bank |
616303 |
Kite Sessions |
2249698 |
Kitesurf Session Data |
257732 |
KKBOX churn scala label |
59568416 |
kkbox_personal_file |
966356656 |
KKBOX_Submission |
7756334 |
kkbox-churn-prediction-challenge |
251716420 |
kkbox-dataset |
2367864146 |
kkbox-dataset |
2367864146 |
kkbox-songs-fixed-quotes |
141341478 |
kkboxmusic |
1754378940 |
kkboxmusic |
1754378940 |
kkkkkk |
188217222 |
KKKKKKK |
855780 |
KLCC Parking |
200862 |
kljkllkjlkjkl |
2327 |
km12west |
90336566 |
Kmeans |
70124 |
KNB Corpus |
8764971 |
Knight Hack Data 2017 Test |
3027284 |
KNN DATA |
7953540 |
knn price predict for test |
4943388 |
knn price predict for test v2 |
4943424 |
KNN project data |
186020 |
knn_data |
1227569 |
KNN_Project_Data |
186020 |
knn_support |
13244266 |
KNYC Metars 2016 |
713492 |
kobebryant |
725655 |
kodutöö |
328619 |
Kodutöö Sissejuhatus erialasse |
378368 |
koko-test |
1310236 |
KokoSamples |
531 |
Koolid |
6553 |
Koolide eksamitulemuste keskmiste võrdlus |
20549 |
Koppen-Geiger climate classification |
777566 |
Korea Horse Racing |
38747408 |
Korean War Bombing Runs |
4018180 |
Korean_won vs US_Dollar exchange rate |
90308 |
KOS bag of words data |
4075212 |
kos_isa |
5080028 |
Kospi Stock Price |
162741302 |
Kraken recent trades |
29216 |
KRAKENUSD-bitcoin |
116302 |
Kung Fu Panda |
171770 |
Kuttaandb |
431780918 |
kuyglulh |
13788274 |
kv2015notext |
31974824 |
Kwici Welsh Wikipedia Corpus |
27161842 |
kyphosis |
1430 |
Kyphosis Dataset |
1430 |
kyukiabhi |
5020428 |
L_AIRPORT |
283530 |
L_AIRPORT_ID |
295598 |
LA International Airport Monthly Flight Operations |
122576 |
LA Vacant Building Complaints |
21300669 |
laaaaa |
4044933 |
Lab 1 Matrix |
18 |
lab_favorita |
102706970 |
labdata1 |
1340922 |
labdata2 |
827898 |
labeled_properties |
14791448 |
labeled_properties |
16977714 |
labeledTrainData |
13788274 |
Labelled tweets about Trump |
2919113 |
LabelMe - Let's Eat! Labeled images of meals |
1947585 |
labels |
14409602 |
labels.csv |
9544 |
ladu1234 |
427836 |
Lahman Baseball Database |
11766307 |
Lahman MLB |
30809107 |
lalthan |
23786298 |
Landslides After Rainfall, 2007-2016 |
441762 |
Langevarjur |
6920518 |
Language Detection |
16277296 |
Language translation dataset |
10664511 |
laonprediction |
38013 |
LapMob |
1189300 |
Large Purchases by the State of CA |
163512353 |
Largest Dog Breed Dataset |
27085723 |
Las Vegas TripAdvisor Reviews |
60079 |
last one |
206347 |
Last Words of Death Row Inmates |
475124 |
Last Year Sales 2 |
41093618 |
last_year_sales |
9914219 |
Latest IMDB |
108584 |
LB - web traffic timeseries forecasting |
96945 |
LB 0.1400 |
206347 |
Lb0.14 |
206347 |
LB0.1400 |
206347 |
lbg_favorita |
17091236 |
LBMA Gold Price (1968-2017) |
580883 |
LCDS Data |
10032349 |
LCDS Data 2 |
475059771 |
LCS 2017 Summer Split Fantasy Player & Team Stats |
121125 |
lda-toy-data |
2011723 |
Le thé est-il bon pour la santé ? |
32926 |
Lead legs on chipset |
2080100 |
Leading Causes of Death in the USA |
1138273 |
Leads Dataset |
5924557 |
league |
23359 |
League of Legends |
29455386 |
League of Legends MatchID dataset V2.0 |
2684573 |
League of Legends Ranked Matches |
729424058 |
League of Legends Summoner Ids and Data - 2016 |
116810146 |
learn with fun |
244993 |
LEARN_ |
16588552 |
Learning ML |
698383 |
Learning Pandas Coookboook |
33838501 |
LearningClassification-ANN |
684858 |
learnJupyterDS |
328384 |
Lego Colors |
1912 |
LEGO Database |
12986014 |
leileizhang |
7974714 |
Lending Club Loan Data |
441771600 |
Lending Club Loan Data |
957262931 |
Lending_Loan |
561036 |
lerproject_3 |
18167 |
Let's Try this again |
195997 |
letsgo |
949847 |
letter_images |
16132257 |
Letters ABPR |
120069 |
LGA_SEN_Districts |
65536 |
lga_sen_districts_dataset |
24983 |
Lgb Esemble + Xgb LB 0.285 |
13618373 |
lgb_favorita |
17091236 |
lgb_ridge |
7974853 |
lgb_ridge_mod |
7975548 |
lgb_support |
17099319 |
lgb_train |
897625746 |
lgb_wordbag |
6334876 |
lgb-21-10 |
16751178 |
lgb-m8 |
16757691 |
lgb000 |
16748807 |
lgb074 |
17067737 |
lgb512 |
17106400 |
lgb515 |
17091236 |
lgbm baseline |
7978666 |
LGBM_output |
16600712 |
lgbm-2-way |
8563689 |
LGBM.csv |
10333691 |
lgbm14_bb |
17098494 |
Lgbmodel |
17062528 |
lgbmodel____ |
7976448 |
LGBMs_support |
415776 |
LGBpred |
17091236 |
LGBpred |
15108438 |
liana-test-hthon |
2274298 |
libftrl-python |
8277 |
libftrl-python |
23813 |
libraries |
100739 |
Libraries |
16565 |
library |
8277 |
Library of Southern Literature |
48682607 |
Licensed Premises in Bristol |
1856745 |
Life Level |
54805 |
lifeexpectancy |
82097 |
lightgbm |
7976287 |
lilwayne |
354 |
lilwayne |
354 |
Lin Thesaurus |
210421609 |
Linear regression |
726209 |
Linear Regression |
14845 |
Linear Regression Dataset |
14823 |
LinearRegression |
572865 |
linearregressionML |
572865 |
LinkedIn Profile Data |
5617925 |
Linux Gamers Survey, Q1 2016 |
876916 |
Linux Kernel Git Revision History |
208910758 |
Linux Kernel Mailing List archive |
247086243 |
Linux Operating System Code Commits |
1069875 |
lip-data |
1654362 |
Liquid foam |
364716846 |
Liquid foam dkCF |
133246855 |
list of ALL countries ISO codes |
4515 |
List of Drake Lyrics |
993849 |
List of Python 3.1 reserved words (json) |
1774 |
list of subway stops |
239604 |
List of words included in GloVe |
30113706 |
Listing Price City |
1055830 |
Lithogeochemistry Leinster Belt |
74629 |
Lithuanian parliament votes |
29787076 |
Liver data |
23346 |
Liver Data Set |
23857 |
Liver_patient |
23857 |
lkjbkjh |
72474 |
lkmlEmailsReduced.txt |
49066 |
ll_testcase |
10097903 |
load_data |
751253 |
Load_Forecasting |
131375485 |
LoadDS |
154483 |
loadPrediction |
59970 |
Loan Data |
44417 |
Loan data |
393075031 |
Loan data sampled |
1097196 |
Loan information - Test |
22054 |
Loan information - Train |
51161 |
Loan information - Train |
51161 |
Loan prediction |
34345 |
Loan Status |
32140 |
Loan_Default_Prediction |
214737859 |
Loan_Forecast |
131375485 |
LoanData |
154483 |
loandata |
441771600 |
loandata |
441771600 |
LoanDS123 |
154483 |
LoanPrediction |
59970 |
loanprediction1 |
21957 |
LoanPredictionIII_AV |
89823 |
Loans data |
751253 |
Localization Data for Posture Reconstruction |
21548954 |
location filtered |
142957 |
login time for users |
141436 |
Logistic on Seguro's problem |
108304724 |
Logistic Regression |
10926 |
logistic_regr |
14175083 |
LogsSys |
2837348 |
Lokalisering helsebygg Stavanger |
872 |
LOL_heros |
14744975 |
(LoL) League of Legends Ranked Games |
9348028 |
london |
4871 |
London Borough Demographics |
23424 |
London Crime Data, 2008-2016 |
932802830 |
London Fire Brigade Calls |
11567174 |
London Fire Brigade Records |
15342016 |
London Police Records |
1206275034 |
london sklearn |
3385695 |
London-based restaurants' reviews on TripAdvisor |
15845006 |
LonelyDataset |
2064 |
Long term insurance in Japan |
4218368 |
long_data_form_climate |
405157 |
Lookup Table of UK Local Government Areas |
1691102 |
Lord Of The Rings Data |
1031794 |
Los Angeles Crime Data, 2012 to 2016 |
193225451 |
Los Angeles Weather During 2014 |
3305 |
Lots of code |
8295095247 |
low_resolution |
772245 |
Lower Back Pain Symptoms Dataset |
42534 |
Lower Back Pain Symptoms Dataset(labelled) |
41805 |
lowprobs |
865188 |
lr porto |
10127349 |
LSTM Att Glove |
14439648 |
lstm model w/ weight |
213952414 |
lstm_support |
16689700 |
lstmdata |
17111063 |
lstmlstmlstm |
17111063 |
lstmsub |
14636290 |
LT support |
283370 |
lt2_support |
283218 |
lucas1 |
1810753 |
lucas2 |
1810753 |
Lucifer <3 H3LL |
96431 |
Lunar Daily Distance and Declination : 1800-2020 |
4238568 |
Lung Cancer 40x100x100 |
311945617 |
Lung Nodule Malignancy |
175233019 |
Luxury Hotel in Dalhousie - Hotel Blue Magnets |
123011 |
Lynda-DeeplearningSales |
43012 |
lyrics from web |
144088 |
m 50 startups |
2436 |
M&M Stock |
9771 |
m1 50 Startups |
2436 |
M1-0101-1000-5-65 |
42274638 |
M3-01022018-test |
7335108 |
ma_avg |
16746510 |
ma8888 |
15160354 |
ma8dwof |
13297050 |
Maakondade statistika |
1218 |
Maakonnad |
9744 |
Maakonnad0 |
533 |
Maakonnad1 |
644 |
Mac Morpho |
10941402 |
Macbeth |
103603 |
Machado |
5380736 |
Machine Learning | Coursera |
2016 |
Machine Learning Awards |
54142 |
machine learning exercise |
2296105 |
machine_labeled_test |
130417 |
machine_learning |
699146 |
machinelearning |
29309 |
macroeconomic |
22296375 |
Madison Lakes Ice Cover |
6372 |
Magic The Gathering Cards |
55272813 |
Mahabharata |
1706482 |
Mahesh Baseline |
7272271 |
MaheshTiv2b |
7272271 |
MaheshTiv2Nov22 |
7272271 |
Mail.csv |
4286 |
mailssms |
290889 |
Maintenance of Naval Propulsion Plants Data Set |
3448926 |
malabel |
106871 |
Malarial Mosquito Database |
6703724 |
Malaysian States and CIty Coordinates |
35083 |
Malicious and Benign Websites |
273704 |
Malicious_n_Non-Malicious URL |
6927806 |
Malimg Dataset |
7755857 |
Mall_customer |
4286 |
Mall_Customers |
4286 |
Mammogram |
16855 |
Mammographic Mass Data Set |
11662 |
mangutabel |
570318 |
Manhattan neighborhood coordinates |
3474 |
Manhattan or Not? |
196665674 |
Mann Ki Baat Speech corpus |
771276 |
Mannanafnaskrá |
37347 |
Mapping the KKK 1921-1940 |
310811 |
Marathon time Predictions |
5664 |
Marcel Train |
590919 |
March Madness Forecasts - Men & Women's |
19290 |
Marginal Revolution Blog Post Data |
16261809 |
Market data from 2001 - U.S. Stock market |
119428914 |
Market Segmentation |
260905 |
marketing |
554657 |
marketing2 |
554657 |
markov chain dataset |
19237769 |
Marvel Characters and Universes |
298695461 |
MASC Corpus |
4963879 |
masoodtest |
432 |
Mass shootings |
224999 |
mass_case_description_train_set.csv |
772727 |
Massachusetts Public Schools Data |
1635625 |
Master's Degrees Programs (mastersportal.eu) |
129834329 |
Match Statistics from top 5 European Leagues |
6501476 |
Math Students |
41983 |
mathDataSet |
273 |
Mathematicians of Wikipedia |
10930286 |
MathUKNow |
815 |
matrix |
18 |
Matrix |
18 |
matrix |
18 |
Matrix |
18 |
matrix |
18 |
matrix |
18 |
matrix |
18 |
Matrix |
18 |
matrix |
21 |
matrix |
18 |
matrix |
18 |
Matrix |
68058836 |
Matrix |
18 |
matrix 1 |
18 |
Matrix Lab 1 |
18 |
Matrix Problem |
19 |
matrix.csv |
18 |
matrix1 |
18 |
matrix2 |
29 |
MaxEnt NE Chunker |
23604982 |
MaxEnt Treebank POS Tagger |
17961132 |
May 2015 Reddit Comments |
NA |
mbti pic |
82550 |
mbti_processed |
25692185 |
(MBTI) Myers-Briggs Personality Type Dataset |
62856486 |
mc data |
2188 |
McDonaldsLocations |
676116 |
McK-test |
700124 |
me_vec |
67184487 |
mean by itemnbr |
70997 |
mean_values |
8570620 |
mean)stack |
4986571 |
Measuring Customer Happiness |
63004455 |
mecaensz007 |
37834097 |
Mecari 4 |
23928058 |
Mecari 5 |
31186148 |
Mecari 6 |
22463627 |
Mecari 7 |
39883022 |
Mecari 8 |
15953814 |
Mecari Mix 2 |
23924098 |
Mecari third round |
23924202 |
mecariAnalysis |
64749750 |
Median age by country since 1950 |
16464 |
Median Listing Price (1 Bedroom) |
52565 |
Median Rank Submission |
22539419 |
median_ma |
54156686 |
median_ma8.csv |
54154718 |
medical |
1701375 |
Medical Appointment |
550394 |
Medical Appointment No Shows |
10739535 |
Medical Data |
208048 |
Medical No show dataset |
10850022 |
medical1 |
1631386 |
medical2 |
341641 |
medical3 |
300647 |
medical31 |
275327 |
medical34 |
300643 |
medical5 |
300951 |
medical54 |
275331 |
Medicare's Doctor Comparison Scores |
722514467 |
MEDLINE and MeSH |
3775910009 |
Meet the Geeks competition's dataset |
13420462 |
Meetups data from meetup.com |
207078701 |
Mega sena |
42419 |
Megasena |
85440 |
Melbourne housing |
773120 |
Melbourne Housing Market |
933634 |
Melbourne Housing Snapshot |
2780441 |
melbourne train dataset |
460676 |
Member Info |
416123732 |
Member States of the European Union |
3850 |
members |
216174388 |
members |
216174388 |
members |
216174388 |
members |
216174388 |
members |
1462998 |
members_old |
195274540 |
Men's Professional Basketball |
7113414 |
Meneame.net front page news |
44048190 |
Mental Health Centers Around USA |
2041859 |
Mental Health in Tech Survey |
303684 |
mentalhealth |
47244 |
mer_price |
198373006 |
merahai bhai |
247074 |
mercai test sujith |
61772212 |
mercari |
196737128 |
Mercari |
1325766866 |
mercari |
196737128 |
mercari |
9806167 |
mercari |
196737128 |
Mercari |
61772212 |
Mercari |
77912192 |
mercari |
6974622 |
mercari |
1635878 |
Mercari |
113703433 |
Mercari |
196737128 |
Mercari Brands List |
428025 |
Mercari Category Average |
2442386 |
Mercari Competition |
198373006 |
Mercari Data |
196737128 |
Mercari External Data |
645128 |
Mercari FastText Vectors - 64 |
41174459 |
Mercari fasttext vectors 64 v2 |
13997930 |
mercari glove submission |
6325841 |
Mercari non-kernel submission |
4892686 |
mercari preds |
7368468 |
Mercari Price Suggestion Challenge |
196737128 |
Mercari Price Suggestion Challenge |
7309593 |
Mercari Price Suggestion Challenge 12122017_1 |
198373006 |
Mercari Season1 |
196737128 |
Mercari Solution |
22102165 |
Mercari Test Predictions #1 |
7298284 |
Mercari train set |
134964916 |
mercari unzip |
198373006 |
mercari wordbatch |
2243245 |
mercari_002 |
8071105 |
mercari_003 |
8027291 |
mercari_01 |
2378970 |
mercari_180115_01 |
8027291 |
mercari_180115_02 |
8028089 |
mercari_baseline_12-05-2017 |
7975801 |
mercari_compe |
196737128 |
mercari_data |
196737128 |
Mercari_dataset_lightgbm_ridge_tfidf |
409785869 |
Mercari_decompressed |
196737128 |
mercari_input |
196737128 |
Mercari_lightgbm_ridge_tfidf2 |
417410092 |
Mercari_meta |
16084104 |
Mercari_Meta_G |
1606701 |
mercari_predice3 |
2378954 |
mercari_predict |
2623673 |
mercari_predict_01 |
2378970 |
mercari_predict_02 |
2378970 |
mercari_predict2 |
2623688 |
mercari_predict3 |
2378954 |
Mercari_stack_mean |
4986571 |
Mercari_Stage1 |
198373006 |
mercari_submission_1 |
2507426 |
mercari_submission_1.csv |
2507426 |
mercari_submit |
5293898 |
mercari_submit_02 |
4957944 |
mercari_submit_03 |
4965087 |
mercari_submit_04 |
7381247 |
mercari_submit_04.csv |
7314130 |
mercari_submit.csv |
5293898 |
mercari_sujith_glove |
6325841 |
Mercari_test_180110_01.csv |
8062402 |
mercari_train |
134964916 |
mercari_try004-01 |
7381247 |
mercari_try004-02 |
7345443 |
mercari_try005_01 |
7295140 |
mercari_ykamikawa |
7975572 |
mercari-datasets |
196737128 |
mercari-mark1 |
4070207 |
mercari-price |
65025931 |
Mercari-project |
9307598 |
Mercari-sparse-merge |
754494419 |
mercari-submission-1 |
4899922 |
mercari-train |
136600794 |
mercari-user-result |
15947642 |
mercariData |
61772212 |
MercariExtracted |
134964916 |
mercarinn |
6325785 |
mercarinn1 |
6325785 |
mercaris |
218443775 |
mercarisubmitnn |
6325785 |
mercarisubnn |
6325785 |
mercarisujith |
6325785 |
mercarisujithnn |
6325785 |
MercariTest |
196737128 |
MercariTrainedDataB |
645128 |
MercariTrainSet |
134964916 |
mercariutils |
902 |
Mercedes Benz car sales data |
580 |
Mercedes Benz Us car sales data 06/May - 09/March |
2694 |
Mercedes-Benz Competition Leaderboard Shakeup |
40765262 |
Mercedes-Benz Greener Manufacturing |
6415134 |
merci_sub1 |
18201482 |
merci12102017 |
9976011 |
mercombine1 |
16770297 |
Mercuri |
134964916 |
mercury |
3835650 |
Mercury_Ensemble |
37701897 |
Merge-Properati |
257088756 |
Merged |
46718 |
merged data |
103053703 |
merged data sets |
117468967 |
merged-data1 |
101699990 |
merkari |
21706647 |
merucari_datasets |
300639131 |
MESSI goals vs Real Madrid 2005-2017 |
1429 |
Messi vs Ronaldo vs Neymar |
1065 |
Meta Kaggle |
2206589497 |
metadata |
6600 |
Metal Banda by Nation |
240271 |
Metal Bands by Nation |
389612 |
Meteorite Landings |
4206156 |
Meteorite Landings in 1900's |
1215963 |
MIAS Mammography |
216233808 |
michelson |
1375 |
Micro-Loans |
1319764 |
Microdados Censo Escolar 2015 |
96890872 |
Microdados Enem 2014 |
1200276946 |
Microsoft Capstone |
37254929 |
Midas Project |
775131 |
middle |
3922688 |
Miles covered |
1498 |
Miles covered 2 |
1251 |
Miles covered 3 |
1248 |
Miles covered 4 |
1248 |
millenium |
184319 |
Million Song Dataset studies |
1609175 |
Mines vs Rocks |
87776 |
minimized_dot_traffic_2015 |
352904 |
Minneapolis Air Quality Survey |
795426 |
Minneapolis Incidents & Crime |
78048883 |
Missing Migrants Dataset |
334006 |
Missing People |
340708 |
Missing people in Russia |
2016747 |
Mix Mix Mecari |
31900368 |
mixing_result |
6788643 |
mk1-net1 |
4070207 |
mk8888 |
15160354 |
mk88888 |
15160354 |
mktdata |
12061734 |
ml_articles |
24901 |
mlabel |
130417 |
MLB 2017 |
391632 |
MLB 2017 Regular Season Top Hitters |
12247 |
MLB dataset 1870s-2016 |
476218 |
MLB Home Run Exit Velocity: 2015 vs. 2017 |
386537 |
MLB Stats |
72825 |
mlbBat10 |
72825 |
mlbBat10.txt |
72825 |
MLchallenge |
2864595697 |
MLearningScrapped |
54039 |
mljar_ |
62414 |
mljar2 |
62689 |
MLUdemy |
684858 |
MMARTfeb |
24327699 |
mnet 27 |
4670617 |
MNIST as .jpg |
18413932 |
MNIST CSV |
9605983 |
MNIST data |
15991536 |
mnist data |
11594722 |
MNIST data |
17051982 |
MNIST Data for Digit Recognition |
11598550 |
mnist dataset |
11493971 |
MNIST dataset |
15991536 |
MNIST Dataset |
15948570 |
MNIST Digit Recognizer |
76775041 |
MNIST Exdb Lecun Uncompressed1 |
9938128 |
MNIST Exdb Lecun1 |
9944478 |
MNIST FASHION |
11594722 |
MNIST Fashion Test + Train |
41054396 |
MNIST Fashion Train & Test |
11592478 |
MNIST Fashion Train and Test |
11592478 |
mnist for tf |
16168813 |
MNIST From Tensorflow Tutorial |
11598550 |
Mnist Model |
17787560 |
MNIST original |
15948570 |
MNIST Original |
18841667 |
MNIST Simple |
16046181 |
MNIST train and test data |
11598550 |
Mnist_01_11_18 |
73700 |
mnist_6k |
11493971 |
mnist_data |
11592478 |
mnist_dataset |
15948570 |
MNIST_examples |
336780 |
mnist_image |
11913 |
Mnist_model_sl |
5981672 |
MNIST_stdm_2017 |
20531112 |
mnist-data-cnn |
11592478 |
MNIST-Handwritten Digit Recognition Problem |
15991536 |
MNIST-Pytorch |
110390848 |
mnist-submission |
212908 |
MNIST: 60,000 hand written number images |
127865437 |
mnist.pkl |
16979733 |
mnist.pkl.gz |
16132257 |
mnist.pkl.gz |
16132257 |
MNIST.Rdata |
23475959 |
MNIST.Rdata |
20499651 |
Mnist+contamination(private test) |
76776148 |
mnistcuboulder |
16168860 |
mnistd |
1654072 |
mnistdata |
11598550 |
MNISTLalthan |
11493971 |
mnistmodel |
15555128 |
mnistmydata |
16132257 |
Mobile location history of 10/2014 |
6149910 |
Mobile phone activity in a city |
1533030064 |
mobilenet_1_0_128_tf.h5 |
17225924 |
mobilenet_1_0_224_tf.h5 |
17225924 |
mod pnet 10 |
4935242 |
Model Control |
13824 |
model v2 24 |
4614238 |
model v2 32 |
4578793 |
model v2 aug 16 |
4735378 |
model v2 test |
4690171 |
model_checkpoint |
47003451 |
model_preds |
25794361 |
model_weights |
14298472 |
model_weights |
4922056 |
model_weights_010_F_d17 |
4051567 |
model-m11 |
16771825 |
model-m48 |
17259353 |
model1 |
1399069 |
model3 |
879356 |
model3_weights |
14717808 |
ModelFile |
144724 |
modelm14 |
16772336 |
modelm16 |
16772965 |
modelm20 |
15160346 |
modelm32 |
17091094 |
modelm36 |
17099303 |
Models |
10720278 |
models |
2814 |
models |
163492396 |
ModelsPlus |
4585079 |
Modified corn dataset |
11979 |
Modified Data for corporacion favorita grocery |
1762305063 |
modified pnet 10 |
4935242 |
modified_train.csv |
10386 |
Module fym |
326656 |
Money Supply M2 BRIC economies |
23826 |
Moneyball |
67157 |
Monthly Salary of Public Worker in Brazil |
18676853 |
Monthly Sales |
1019 |
monthy_milk |
4390 |
Montreal bike lanes |
31178 |
Montreal Street Parking |
121638070 |
Monty hall |
2584 |
Monty Python Flying Circus |
3944448 |
Monty Python Flying Circus |
1056462 |
Monty Python's Flying Circus |
1060891 |
MOOC Dataset |
8701582 |
MOOC Dataset |
12488985 |
MOOC Kaggle dataset |
126153 |
More data beats better algo |
562357 |
More Linear Regression |
1586687 |
More Stacking |
11379395 |
more_lgbm_2 |
7975028 |
Mortality by Age IHME |
2079315 |
Mortality Projection by Worldwide Health Org. |
13019648 |
Moscow Ring Roads |
3629518 |
Moses Sample |
10985045 |
Most Common Wine Scores |
384954 |
Most Popular Quotes on Goodreads |
1527563 |
Mother Jones Mass Shootings |
164520 |
motionData |
19875707 |
Movebank: Animal Tracking |
22288597 |
Movehub City Rankings |
100814 |
Movement coordination in trawling bats |
14194970 |
Movie Data |
27246093 |
Movie Dataset |
760318 |
Movie Dataset |
1494688 |
Movie Dialog Corpus |
30116727 |
Movie dialogue corpus part1 |
2834799 |
Movie dialogue corpus part2 |
2969008 |
Movie Dialogue Segment Extraction |
4056 |
Movie Genre from Its Poster |
26789506 |
movie id title |
49292 |
Movie Industry |
976097 |
movie lens |
34849899 |
Movie lens |
236356 |
Movie Lens dataset |
5315716 |
Movie Ratings |
21781 |
Movie Review |
54848164 |
Movie Review |
8481022 |
Movie Reviews |
1843846 |
Movie Reviews |
4009415 |
Movie reviews IMDB |
137881715 |
movie_lens_dataset |
6783244 |
movie_metadata.csv |
567484 |
movie_rating_data |
551445949 |
Movie_ratings |
1041 |
movie_ratings.json |
1228 |
movie_review extended |
80292456 |
movie_reviews_set |
77298342 |
movie-dialogue-analysis |
17901671 |
movie-sentiment-analysis |
55178882 |
Movie&WorldGDP |
1639121 |
movie5740goodgoodstudy |
45742895 |
movied |
13788274 |
moviedata |
6783244 |
movielens |
198702078 |
MovieLens |
42500756 |
Movielens (Small) |
3130294 |
MovieLens 100K Dataset |
16100896 |
MovieLens 20M Dataset |
928454686 |
MovieLens DataSet |
1358614 |
Movielens DataSet |
6316858 |
MovieLens Dataset |
1352932 |
MovieLens DataSet |
2795889 |
MovieLens_1 |
140248124 |
movielens2 |
205067583 |
moviereviews |
13601750 |
Movies |
1659058 |
moviesIDB |
1659058 |
Moviestart |
1659058 |
Moving Objects from VISTA Survey (MOVIS) |
6015047 |
mpnet 10 |
4935242 |
MPQA Subjectivity Lexicon |
662621 |
mpstest |
61965408 |
mpstrain |
135342858 |
Mr Donald Trump Speeches |
13708122 |
MRI and Alzheimers |
50010 |
MRI and Alzheimers scan by the OASIS project |
21720 |
MSD2017 |
22601 |
MSdata |
324594847 |
mtcars |
1700 |
muftimm : Data Testing |
27117975 |
muftimm : Data Training |
6823239 |
Mujhe Kiyun Nikala |
1287689 |
MULTEXT |
122461442 |
Multilingual word vectors in 78 languages |
176671673 |
MultipleLinearRegression |
5656 |
Multispectral Image Classification |
4924096098 |
Munic docs |
410594 |
Murder Accountability Stats 2016 |
16975636 |
MurderRate |
256 |
MurderRate1 |
226 |
MurderRate2 |
226 |
Murders |
1972 |
Museum of Modern Art Collection |
34825107 |
Museum Reviews Collected from TripAdvisor |
10640933 |
Museums, Aquariums, and Zoos |
6817303 |
Mushroom Classification |
374003 |
MushroomDatafile |
374003 |
Mushrooms |
374003 |
Mushrooms edibility |
374003 |
Music notes |
89874178 |
music_churn_data |
31583974 |
MusicData |
391356 |
MusicDataset |
391381 |
Mussel Watch |
163609059 |
Mutual Funds |
47155186 |
mvc_graph |
2422395 |
mvt data |
7317543 |
My Chess Games |
1920551 |
My Clash Royale Ladder Battles |
167700 |
My Complete Genome |
15683529 |
My data set (Taxi data set) |
312327125 |
My dataset |
15347 |
My dataset for fun |
81 |
my files |
128715521 |
my first test |
4272986 |
My Kaggle |
2043644 |
My Neta Data 2014 |
685332 |
my plume |
271744 |
my prediction |
8946112 |
My Ridge 1 |
8114774 |
My Settlers of Catan Games |
16689 |
My Test 2 |
172104359 |
My Test 3 |
7379191 |
My trip data |
35693290 |
My Uber Drives |
86369 |
MY work |
855780 |
my_data |
4043708 |
My_first_project |
869537 |
My_Kernels |
79575104 |
my_mnist |
54950048 |
My_model |
11256837 |
my_NY_Taxi |
59064305 |
my_res |
10366748 |
my_sales_prediction |
697785 |
my_solution |
3679 |
my_sub_6 |
251018 |
my_submit |
4072663 |
My_Subs |
36545515 |
My_Temp_dataset |
1058278 |
my_test |
3150486 |
my-data |
20103200 |
my-keras-ff |
243159 |
my-submission |
6343729 |
MyBaseline |
5264890 |
MyCheckins_small |
372624 |
MyChessGames |
4738039 |
myCSAV |
344608811 |
mydata |
14524768 |
Mydata |
869537 |
MyData |
568100 |
mydata |
1029225 |
mydata stuff |
61194 |
mydata_lightgbm_ridge_tfidf |
409785821 |
Mydata1 |
869537 |
Mydata1 |
3970605 |
MyData2 |
9426934 |
Mydata2 |
869537 |
mydatabase |
15243828 |
mydataset |
2176225 |
MYDATASET |
852175 |
Mydataset |
724 |
mydataset |
14563117 |
myDataSet |
89 |
mydatasets |
7247319 |
MyFinal |
86439 |
myfirst |
563388170 |
MyFirstSubmission |
4098 |
MyGmailData |
58013 |
mymydata |
3293153 |
mynewdata |
1810753 |
myNNep_2_1221 |
7284858 |
myNNep_2_bs_1536_lrI_0.013_lrF_0.009_dr_0.25 |
7266601 |
myNNsubmission |
6333357 |
mypractice |
20678541 |
MyRepublicID Twitter Data |
3437834 |
myRidgeWOzeros |
7945772 |
myself_modules |
23968 |
mysubmission |
7341635 |
mysubmission |
7316365 |
mySubmission |
7316365 |
mysubmissions |
6343728 |
mysubmit |
7305775 |
mysubmit_1221 |
7975130 |
mysubmit_dec |
2430798 |
mysubmit_tanh |
7303010 |
mysubmit2_1221 |
7975130 |
mytest |
18162563 |
mytestdata |
23146 |
mytitle |
5993 |
mytrain |
475652919 |
mytrainingdata |
129135359 |
mywork1ml4 |
3150486 |
myxml1 |
3476 |
n601042018test |
328228 |
naives |
4044915 |
NALCS Summer 2017 All Pro Votes |
8675 |
Name element categories for cereals |
5515 |
Name pronunciations in videos |
618 |
name_feature |
1424 |
Names Corpus |
56572 |
namescores |
5739450 |
Narrativity in Scientific Publishing |
11373016 |
NASA Astronauts, 1959-Present |
81593 |
NASA Facilities |
103259 |
nasa-small |
255410 |
NASCAR Champion History (1949-Present) |
3698 |
NASDAQ financial fundamentals |
15738123 |
nashanatasha |
99185 |
Nashville Housing Data |
11267905 |
National Accounts |
35765062 |
National Basketball Association(NBA) Dataset |
89003 |
National Employment, Hours, and Earnings |
1199787183 |
National Footprint Accounts data set (1961-2013) |
13229220 |
National Health and Nutrition Examination Survey |
32554793 |
National Institute of the Korean Language Corpus |
2445134 |
National Nutrient Database |
690056 |
National Park |
3750451 |
National Pokedéx - Basic |
128150 |
National Wetlands Inventory |
83929579 |
National_Adult_Tobacco_Survey |
65128 |
Nationalities |
2073 |
Natural Earth - Simplified Countries |
748067 |
Natural numbers, up to eleven |
24 |
Natural Rate of Unemployment (Long-Term) |
4091 |
Natural Stories Corpus |
32649246 |
Naughty Kid Regression datasets |
3750 |
Nazi Tweets |
60165007 |
NBA 16-17 regular season shot log |
19971572 |
nba draft |
570658 |
NBA Draft Value |
501389 |
NBA Enhanced Box Score and Standings Stats |
5801591 |
NBA Finals Team Stats |
77723 |
NBA Free Throws |
75737800 |
NBA player info |
610740 |
NBA Players Stats - 2014-2015 |
80373 |
NBA Players stats since 1950 |
5398518 |
NBA Season Records from Every Year |
192668 |
NBA shot logs |
16423917 |
NBA Writer Rank |
71198629 |
NBA_data with bet365(2009-2011) |
1988439 |
NBA_train |
86021 |
NBA14to15 |
776166 |
nba2014to2015 |
776166 |
nbachallenge |
8558950 |
nbacoach |
187728227 |
NBAplayoff |
7205768 |
nbasalariesfull.csv |
55624 |
NBER Macrohistory Database |
32333137 |
Near Earth Asteroids |
62605 |
Near-Earth Comets |
25402 |
Nearest Cities for NYC Taxi Trips |
402990020 |
needed4pytorch |
127912256 |
Neighborhoods in New York |
1719637 |
neo_bagging_1515685296 |
4306781 |
neo4j_property_graph_model |
59940 |
Nepal News Homepages |
225 |
NEPSE index |
846 |
ner_modified_encoding |
3319651 |
Net Migration |
7102 |
Net Neutrality Accountability |
73080 |
net shopping |
196737128 |
Netchecker |
3150486 |
Netflix Prize data |
2131753487 |
network |
226358 |
Network Attacks |
29726213 |
Network Attacks |
18646312 |
Network Attacks HE |
2910198 |
neural_net |
19678572 |
NeuralNet |
7272919 |
NEW AAPL |
614145 |
New Car Sales in Norway |
234699 |
New CPU Data |
9265 |
new data |
139383 |
New dataset |
8081 |
New Human Index |
10302 |
New Orlean's Slave Sales |
4312299 |
new subway entances |
241968 |
New train set |
31424318 |
New York Citi Bike Trip Duration 2016 |
456080177 |
New York City - 2013 Campaign Contributions |
5330287 |
New York City - Buildings Database |
304542181 |
New York City - Certificates of Occupancy |
15009130 |
New York City - Citywide Payroll Data |
414298921 |
New York City - East River Bicycle Crossings |
18446 |
New York City Bike Share Dataset |
132047989 |
New York City Census Data |
2574719 |
New York City Crimes |
265731103 |
New York City Taxi Trip - Distance Matrix |
4776253 |
New York City Taxi Trip - Hourly Weather Data |
1305316 |
New York City Taxi Trips - Important Roads |
457333789 |
New York City Taxi with OSRM |
2046528343 |
New York City Transport Statistics |
342168232 |
New York City WiFi Hotspots |
1031294 |
New York Hotels |
222663 |
New York Satellite Image |
24576531 |
New York Shapefile |
13963510 |
New York Shapefile 16 |
3529738 |
New York Stock Exchange |
105844882 |
New York Taxi Trip enriched by Mathematica |
400048262 |
New York Traffic Accidents 2016 |
26418375 |
New Zealand Migration |
4110616 |
new_data |
7647036 |
new_data |
7636866 |
new_importance_list |
6935 |
new_main_12 |
4180803 |
new_train |
23300840 |
New_york_Hourly_crime |
245405 |
new-model |
11256837 |
newchurn |
669696 |
NewData |
1810753 |
NewData2 |
1810753 |
NewDataNY |
35693290 |
newdataset |
24885 |
NewDataSet |
134964916 |
newfile |
36789058 |
newnew |
9201576 |
News Aggregator Dataset |
102895657 |
News and Blog Data Crawl |
480781845 |
News Articles |
5071129 |
News Headlines Of India |
64919115 |
News of the Brazilian Newspaper |
503611422 |
NEWS SUMMARY |
11896415 |
news_corpora |
29174052 |
News01 |
23668 |
News02 |
9015 |
NewsCWUR |
1212759 |
Newspaper churn |
1902051 |
Newspaper churn |
1359983 |
Newspaper Endorsements of Presidential Candidates |
19444 |
newsShanghai |
440994 |
NewTest |
7250673 |
NewYork_Hourly_Climate |
390943 |
NFL Arrests |
60450 |
NFL Arrests 2000-2017 |
177852 |
NFL Draft Outcomes |
798490 |
NFL Features |
987128 |
NFL Football Player Stats |
34399801 |
NFL Offensive Gains |
712923 |
NFL Offensive Yards Gained |
738550 |
NFL play-by-play 2016 |
10509809 |
NFL Statistics |
97890277 |
nfl test data |
47562 |
nfl_offense_cleaned_2017to2007 |
70284 |
nfl_pbp_2016 |
10509809 |
NFL_Working |
1046501 |
NFLArrests |
177852 |
NHANES Hypertensive population 2008-2016 |
610917 |
NHL Player Stats 2004 - 2018 |
568858 |
nifty_data |
99408 |
NIFTY50 SHARE MARKET DATA SET INDIA |
27821 |
niftycsv |
169482 |
NiftyDataForTesting |
170775 |
NIH Chest X-rays |
45077768961 |
Nineteenth Century Works On Nepal |
3544083 |
NIPS 2015 Papers |
29094860 |
NIPS 2017: Adversarial Learning Development Set |
153340879 |
NIPS Conference 1987-2015 Word Frequency |
928997 |
NIPS Papers |
148549575 |
NIPS17 Adversarial learning - 1st round results |
49523 |
NIPS17 Adversarial learning - 1st round results |
49523 |
NIPS17 Adversarial learning - 2nd round results |
91364 |
NIPS17 Adversarial learning - 3rd round results |
151391 |
NIPS17 Adversarial learning - Final results |
225272 |
nishant887y |
159 |
nist sd19 10 percent |
129926992 |
nist_sd19_10percent |
129926992 |
NJ Teacher Salaries (2016) |
28334467 |
NJ Transit Train Schedule |
3309933 |
nkm-data1 |
1019399 |
NLP - Topic Modelling |
120062315 |
NLP Data |
3295644 |
NLP Playground |
11280053 |
NLP Shakira |
72706 |
nlp_data |
4054789 |
nlp_data_2 |
91162 |
nlpprac |
518731 |
nltk-movieReviewData |
4004848 |
nltk123 |
345755 |
NN ensemble |
14412166 |
nn keras data |
7307405 |
nn keras data1 |
7307405 |
NN1andRidge1 |
15239999 |
NN3 Competition Datasets |
81697 |
NNDataset |
18217466 |
NNet work |
4273725 |
nnetproto |
287859225 |
nnkeras |
8143627 |
nnsub11 |
6025830 |
NNtest |
7266202 |
No Data Sources |
1 |
No_survivors |
3258 |
No.19 President Vote Result |
6207900 |
No11036 |
1365898 |
NOAA Pipelined Data |
64 |
NOAA_2011_Austin_Weather |
236091 |
Nobel Laureates, 1901-Present |
289963 |
Nomad GP |
25348 |
Nomad lgbm 1 |
25323 |
NOMADv2 |
1009807 |
NomBank |
6781050 |
Nominal GDP per capita of Spain (by regions) |
2365 |
Non-invasive Blood Pressure Estimation |
195189404 |
non-linear regression |
8762622 |
Nonbreaking Prefixes |
43190 |
None_None |
7361689 |
none202 |
5993 |
Nonlinear_Data1_Benchmarking |
2189 |
noNLP2 |
5533694 |
nonlp3 |
5534520 |
nonlp4 |
5514335 |
noNLPnoTL |
5418141 |
normal_selu |
14636290 |
North American Slave Narratives |
54688021 |
North Carolina Schools: Report Cards and Metadata |
2040990 |
Norwegian Development Funds 2010-2015 |
52758336 |
noshow |
10739535 |
noshowapp |
2513958 |
NOshowrate |
24771860 |
[Not being Maintained] |
309011219 |
Not Fake News |
4322 |
Not MNIST |
255877003 |
note piano |
27739 |
nothing |
588903 |
notMNIST |
116399788 |
notMNIST dataset |
8458043 |
nottfi |
744331 |
Noun Compositionality Judgements |
496121 |
Nouns Counts in the Works of Edgar Allan Poe |
561704 |
Nouns in Works of Poe |
139697 |
novel detection problem |
39652204 |
novelty authorn |
2871669 |
Now That's What I Call Music (U.S. releases) |
179483 |
NP12345 |
698943 |
NPS Chat |
2578726 |
npzfile_of 10 model |
838376315 |
NQ_CL_1718 |
851427 |
NSE daily data |
31122 |
NSE India stocks (companies) |
1997075697 |
NSE India stocks (Indices) |
42234206 |
NSE Stocks Data |
31361575 |
NSEI aka Nifty 10 years data |
169482 |
NSW/CPS |
754918 |
ntmntm |
8071016 |
NTSB Accident Reports |
23238603 |
NTU Physical Design PA3 |
333128 |
NU Data Mining Homework 1 |
107 |
nullptr |
78859 |
Number of Fire Deaths in England 1981 - 2016 |
192 |
Number of trains on the sections of the network |
2582788 |
Number Sequence System |
9255288 |
number_of_atoms |
42559 |
number_of_atoms |
10625 |
number_of_atoms_test |
10625 |
NumberDivisibilty |
6989 |
numbers-of-shares-clgch |
3411917 |
Numd80 |
380667276 |
Numenta Anomaly Benchmark (NAB) |
9593155 |
Numerai 2017 Tournament 52 |
37279734 |
numerai_82 |
144188732 |
numerai-sample |
103815144 |
Numerai73 |
389549408 |
Numeral Gestures recorded on iOS |
90326560 |
NumeroNOMNIST |
12692 |
Nürburgring Top 100 |
3858 |
Nursing Home Compare |
333234374 |
Nutrient |
1849 |
Nutrition |
9140643 |
Nutrition Facts for McDonald's Menu |
29988 |
Nutrition facts for Starbucks Menu |
45283 |
Nutrition1 |
1537920 |
NVIDIA Self Driving Car Training Set |
2328695845 |
NY City Taxi Trip distances |
315349767 |
NY data |
42627208 |
NY GeoJson |
1501587 |
NY Philharmonic Performance History |
257861032 |
NY State Lotto Winning Numbers |
55503 |
NY TaXi Train |
483072 |
NY trip data |
166615212 |
NY_mental_patient_survey |
4184917 |
NY_traffic_data |
63687406 |
NYC 2016 Holidays |
535 |
NYC Active Dog Licenses |
2783298 |
NYC Baby Names |
891072 |
NYC Borough Boundaries |
1219991 |
NYC boroughs shapes |
2797308 |
NYC City Hall Library Catalog |
5174122 |
NYC Dog Names |
146455 |
.nyc Domain Registrations |
3220894 |
NYC Filming Permits |
13767651 |
NYC flight data 2013 |
8424911 |
NYC Government Building Energy Usage |
10656 |
NYC hourly car accidents 2013-2016 |
243632397 |
NYC Hourly Temperature |
220918 |
NYC Neighborhoods |
1239877 |
NYC Neighborhoods GPS |
17817 |
NYC Open Data Metadata |
4722022 |
NYC Parking Tickets |
8971948107 |
NYC Property Sales |
13625843 |
NYC Rat Sightings |
54883237 |
NYC Rejected Vanity Plates |
2473266 |
NYC Restaurant Inspections |
146153657 |
NYC ride time prediction - assist files |
46678255 |
NYC SUBWAY ENTRANCE |
239604 |
NYC Subway Entrance Data |
239604 |
nyc subway entrances |
239604 |
NYC Subway Entrances |
239604 |
nyc subway entrances |
239604 |
nyc subway entrances |
239604 |
nyc subway entrances |
239604 |
NYC Subway Entrances_Malinee |
239604 |
NYC Subway Entrances_Parichart |
239604 |
NYC Taxi Data |
17455616 |
nyc taxi data jan half |
504328679 |
NYC Taxi dataset |
5041 |
NYC taxi trip (1) |
385622215 |
NYC taxi trip (2) |
385616657 |
NYC taxi trip durations |
495707032 |
NYC taxi yellow tripdata 201701 |
11586 |
NYC taxi zones |
12322 |
NYC Taxis combined with DIMACS |
241645369 |
NYC Transit Data |
1312881840 |
NYC Uber Pickups with Weather and Holidays |
2075599 |
NYC Weather |
1913671 |
NYC Weather Parameters |
3226 |
nyc_taxi_trip |
2088286 |
nyc-rolling-sales.csv |
13625843 |
NYCdata |
246001998 |
nycdata2 |
90249030 |
nycdatawork |
90336566 |
NYCHA Staten Island Asbestos Siebel Data |
90192 |
nyctaxieda |
498999442 |
NYCUpdated |
90249030 |
NYData |
35693290 |
NYPD Motor Vehicle Collisions |
239819199 |
NYSE-1965 |
975124 |
nytimes articles |
20653 |
O'Reilly Strata London 2017 Talks and Ratings |
52892 |
Obama Visitor Logs |
1218589491 |
Obama White House |
199928173 |
Obama White House Budgets |
7566029 |
Obesity Stats |
20397291 |
objectrecgo |
34339535 |
objectrecog |
40063927 |
occgender |
31336 |
occupation |
22667 |
Ocean Ship Logbooks (1750-1850) |
19755905 |
OD_test_1 |
1532563 |
ODI Cricket Matches |
1350073 |
ODI data from 1971 to 2011 |
573543 |
OECD Better Life Index 2017 |
5023 |
OECD macroeconomic data |
38819228 |
OECD Productivity Data |
27609621 |
Ofcom UK Broadband Speed 2016 Open dataset |
32855594 |
officaldata |
287859225 |
Oil and Gas |
1036490 |
Oil Barrels |
58880 |
Oil Pipeline Accidents, 2010-Present |
908056 |
Oil price and share price of a few companies |
3208415 |
Oil sales analysis |
629117 |
ojbklgbm |
8070518 |
Oklahoma Earthquakes and Saltwater Injection Wells |
4187918 |
Old Newspapers |
2196786581 |
olivetti |
1903745 |
Olivetti_Faces |
1903745 |
Olympic Games |
436130 |
Olympic Sports and Medals, 1896-2014 |
3047770 |
Olympic Track & Field Results |
797283 |
Olympics_1896_2012 |
404121 |
one million movie |
70066042 |
One week of Betfair data: 23 sports |
337478465 |
One week of Betfair data: horses |
150888516 |
One Week of Global Feeds - News Dataset |
294039203 |
Oneside |
1015880 |
oneside&smote |
4166950 |
OnesideAlone |
1015880 |
OnesideSelec |
1015854 |
OneVsRest Classifier versus Multi-Output |
248022779 |
Onifi risk loan risk prediction |
28953759 |
Online Auctions Dataset |
1049357 |
Online Chinese Chess (Xiangqi) |
15920715 |
Online Courses from Harvard and MIT |
66858 |
Online Generated MNIST Dataset |
6363682 |
Online Job Postings |
96789716 |
Online News Popular |
5229121 |
Online News Popularity |
5220015 |
Online Product Sales |
1627125 |
Online Recipe Data |
333796 |
Online Retail |
23715344 |
Online Retail Data Set |
45580638 |
online sales |
1519635 |
OnlineNewsPopularity |
24311769 |
onlinenws |
24311769 |
onlineRetail |
7548662 |
onlineretail |
3291222 |
Only Sathyam |
20248 |
onstatus |
661071 |
oooooooooooooooo |
6531 |
op-123 |
1024979 |
Open Beauty Facts |
12317416 |
Open Data 500 Companies |
489447 |
Open Data 500 Companies |
82749 |
Open Exoplanet Catalogue |
466109 |
Open Flood Risk by Postcode |
88682006 |
Open Food Facts |
1010256825 |
Open Multilingual WordNet |
48320874 |
Open Postcode Elevation |
19796379 |
Open Postcode Geo |
281633058 |
Open Pubs |
7106722 |
Open Sprayer images |
155083085 |
OpenAddresses - Asia and Oceania |
3997876240 |
OpenAddresses - Europe |
7911632856 |
OpenAddresses - North America (excluding U.S.) |
4887052811 |
OpenAddresses - South America |
6611249144 |
OpenAddresses - U.S. Midwest |
2174018364 |
OpenAddresses - U.S. Northeast |
2045068168 |
OpenAddresses - U.S. South |
3404926019 |
OpenAddresses - U.S. West |
2448531541 |
openai unsupervised sentiment |
320140754 |
OpenCorpora: Russian |
282996427 |
Opendata AIG Brazil |
5584083 |
OpenData Impact Map |
782515 |
OpenStreetMap Data - North Bangalore, India |
205229390 |
Opinion Lexicon |
67865 |
optimized |
4080828 |
order_products__train |
24680147 |
Orders data |
1428213 |
oregon education |
233763 |
Oreo Flavors Taste-Test Ratings |
1083 |
orig_dat |
9199904 |
Origin |
78025130 |
Original mdf |
292334591 |
Original Submission Sample |
240909 |
original_data |
198373006 |
original_edx_data |
10006416 |
ortools.zip |
36750210 |
OSHA Inspections of Dental Practices (1972-2017) |
737479 |
OSMI Mental Health in Tech Survey 2016 |
83459533 |
OSRM Data |
580270529 |
oss file sizes |
479681865 |
Osu! Standard Rankings |
9810 |
Other parameters |
18196682 |
Other try |
14401031 |
otherkernels |
2102412 |
others_MA8 |
12756180 |
oudav4 |
1091879 |
ouptutj |
17321574 |
out.csv |
4860484 |
Outcomes for prediction |
396 |
Outlier |
2871649 |
outliers |
85713 |
outmodelch |
124248654 |
output |
2041915 |
output |
7374647 |
output |
5012984 |
output |
12725557 |
output |
3256 |
Output for 20 kernels porto seguro |
384308032 |
output of the kernel |
37412275 |
output sample |
43499 |
output4 |
101080830 |
outputn |
471686 |
Over 13,000 Steam Games |
539878 |
Overlapping chromosomes |
24203163 |
Overwatch |
1927 |
Overwatch Game Records |
710065 |
Own dataset |
561 |
Oyo rooms Delhi |
34180 |
p2hdata |
116457882 |
P300-Dataset |
323290993 |
padestrians_images |
20323705 |
Paintings |
6021 |
Pak Youth Unemployment vs Terrorist Attacks |
34071 |
Pakistan Drone Attacks |
161953 |
Pakistan Drone Attacks |
486315 |
Pakistan Education Performance Dataset |
253565 |
Pakistan Intellectual Capital |
332809 |
Pakistan Intellectual Capital |
332805 |
Pakistan Suicide Bombing Attacks |
231347 |
Pakistan Tehsil District Census |
54663 |
PakistanDroneAttack |
161965 |
palm_dataset |
17227039 |
pandas_for_everyone |
81932 |
pandas_tutorial |
115124 |
pandas-tutorial-datasets |
1165078 |
PanLex Swadesh |
2868894 |
Pantheon Project: Historical Popularity Index |
1530565 |
Papa New Guinea |
181108 |
Paper_Scissor |
8226325 |
Paradigm |
361186 |
Paradise Papers |
7316696 |
Paradise-Panama-Papers |
141019215 |
parallel English-Spanish |
141185 |
Parallel scheduling dataset for Cloud environment |
24559 |
Parallel scheduling workload |
25421 |
ParamS5 |
5458701 |
paramsearch |
3649 |
Paranormal Romance Novel Titles |
93647 |
Parking Violations, December 2015 |
26605152 |
Parkinson Disease Spiral Drawings |
16482050 |
Parkinson's Disease Observations |
889296 |
Parkinson's Vision-Based Pose Estimation Dataset |
138624226 |
Parole Data |
18533 |
Parole hearings in New York State |
9881645 |
Part 1 - Data Preprocessing |
3880 |
PartialDatasets |
820867 |
Participation in cultural activities |
622491 |
Party strength in each US state |
125762 |
past_data |
68252050 |
past_data1 |
11989231 |
past_data2 |
11989231 |
Patent Assignment Daily |
286556804 |
Patent Grant Full Text |
596450131 |
Patent Litigations |
1684999366 |
Path of exile game statistic |
9171959 |
patient |
512 |
Patient Characteristics Survey (PCS): 2015 |
4184917 |
patientmet |
678 |
patients |
1190 |
patientsmeta |
678 |
Pauvrete_richesse_france_2014 |
19638 |
PAytm edit |
1319411 |
PC_Games |
487509 |
PCA analysis with Decision tree |
300584782 |
pcnn fhv lee 32 |
4712245 |
pcnn fhv lee16 |
4728245 |
pcnn fhv lee24 |
4733100 |
pcnn fhv lee32 |
4712245 |
pCNN FHV Lee8 |
4671863 |
PDD Graph |
2642 |
pe_pkl |
16803263 |
PE08 Parseval |
296619 |
Pedestrian Dataset |
51232595 |
Pedestrian Dataset |
24378183 |
pedestrian no pedestrian |
16633885 |
Pediacities NYC Neighborhoods |
498176 |
Penn Tree Bank |
1746323 |
Penn World Table |
7435033 |
Pennsylvania PSSA and Keystone Results |
11047144 |
Pennsylvania Safe Schools Report |
7180485 |
People and Character Wikipedia Page Content |
232516861 |
people walking |
8025457 |
People Walking with No Occlusion |
66 |
People Wikipedia Data |
30838672 |
People without internet |
138506 |
Per Capita Personal Income by Metro Area 2007 2015 |
5856 |
PerHour |
371073 |
Periodic Table of Elements Mapped to Stocks |
8188565 |
Periodic Table of the Elements |
717980 |
periodicTable.cvs |
12360 |
perishable products Colombian markets |
2985281 |
Perluniprops |
136038 |
perMinuteWeatherReport |
27425604 |
person |
28181208 |
Person of the Year, 1927-Present |
11686 |
personal |
17172700 |
Personal |
48948 |
PersonalTimestamp |
354 |
Pesticide Data Program (2013) |
111451786 |
Pesticide Data Program (2014) |
121908874 |
Pesticide Data Program (2015) |
128802442 |
Pesticide Use in Agriculture |
24834854 |
PGA Tour 2016/2017 Leaderboards |
964012 |
PGJ_DR about my private work |
623209 |
Pharmaceutical Tablets Dataset |
93218742 |
Philadelphia Crime Data |
310178968 |
Philadelphia Real Estate |
220983 |
Phishing dataset from Sep 01-24 |
360527 |
photo5 |
739 |
photo5.jpg |
144753 |
photonew |
6707 |
pic_asdf |
234234 |
pickefile |
235800 |
pickled mnist neural net |
191267 |
pickletest |
6770 |
Picture1 |
77794 |
Pictures from internet - memes |
14216914 |
PID666 |
23279 |
PIL Corpus |
4170899 |
Pill Count detection |
40228319 |
pima indian |
23279 |
Pima Indian Diabetes Data |
30789 |
Pima Indian Diabetes Problem |
24045 |
Pima Indians Diabetes Data Set |
23279 |
Pima Indians Diabetes Database |
23873 |
Pima Indians onset of diabetes dataset. |
23279 |
Pima_Diabetes_dataset |
26255 |
pima-indian |
23279 |
pima-indian-diabetes |
1003 |
pima-indians-diabetes |
23279 |
pima-indians-diabetes.data |
23279 |
PimaDiabetesMean |
30394 |
PimaDiabetesMedian |
25280 |
PimaDiabetesZeroesRemoved |
12719 |
Pisa Scores |
114208 |
Pisa scores Males students Math data 2015 |
1570 |
Pisymbol |
14601 |
Pitcfork reviews CSV |
33370056 |
pizza data v2 |
318851 |
Pizza In Brooklyn |
3234 |
Pizza restaurants and the pizza they sell |
1113658 |
PizzaDataV2 |
318851 |
PizzaZona14V2 |
318851 |
pklData |
8460437 |
pkugoodspeed |
4046431 |
PL 196x Corpus |
58299303 |
places |
518562 |
PlanesNet - Planes in Satellite Imagery |
59705833 |
player.csv |
15422590 |
Players2016 |
170890 |
PLAYERUNKNOWN'S BATTLEGROUNDS Player Statistics |
65064745 |
Playing with text classified ads |
55453734 |
playstore |
5114702 |
playstore1 |
5114694 |
please |
8042801 |
pleasework |
4417183 |
PM2.5 Data of Five Chinese Cities |
15615995 |
pnet 40 |
18477645 |
poc- restaurent reviews |
61332 |
pocdddd |
5993 |
Poems from poetryfoundation.org |
605913 |
Poetry |
6183930 |
Poetry Analysis Data |
605913 |
Poetry Analysis with Machine Learning |
605913 |
Points for Perceptron Class |
1881 |
Pokachi |
7992 |
Pokedex |
130239 |
Pokemon |
79392 |
pokemon |
44028 |
Pokemon |
7992 |
pokemon |
44028 |
Pokemon |
698383 |
Pokemon |
698383 |
Pokemon (Gen 7) |
122016 |
Pokemon battle |
698383 |
Pokemon Dataset |
7992 |
Pokémon for Data Mining and Machine Learning |
818798 |
Pokemon Go Gen II (251) |
31606 |
Pokemon Images |
29701331 |
Pokemon Images Dataset |
41408300 |
Pokemon Moon Wonder Trade Informatics |
36505 |
Pokemon Sun and Moon (Gen 7) Stats |
1692546 |
Pokemon Trainers Dataset |
1884160 |
Pokemon Visual Stats using SEABORN! |
7992 |
Pokemon Weakness - Generation 1 |
7832 |
Pokemon with stats |
44028 |
Pokemon_Beginner |
698383 |
Pokemon- Weedle's Cave |
698383 |
pokemon.csv |
40454 |
Pokemon1 |
79392 |
Pokemon12 |
44028 |
PokemonGO |
17000 |
Poker Hand Dataset |
6560698 |
Poker Hold'Em Games |
82609982 |
Poker sample data |
214 |
Poker Winings |
214 |
poker1 |
853 |
Pokerset |
214 |
PokWin |
853 |
Police Killing |
293056 |
Police Killings |
294629 |
Police Officer Deaths in the U.S. |
4597386 |
Polish OLX items |
25575073 |
PolishDS |
8963390 |
Political Social Media Posts |
4309577 |
Polling |
4178 |
PollutionLevel |
517117 |
PolynomialRegression |
6172 |
POM DB1 |
49601840 |
popados |
2944 |
popopopop |
99185 |
Popular websites across the globe |
2662038 |
Population |
365 |
Population |
1126 |
Population |
123495 |
population by state |
630 |
Population Median Age by Country since 1950 |
329006 |
Population vs profit made by restuarant |
1456 |
Population_ibge_al |
4261 |
Porn Data |
21068290 |
Port Segure Mix |
21296551 |
portal |
35951232 |
Porter Test |
680060 |
portfolio_hackerearth |
845939 |
Portland Oregon Crime Data |
136956832 |
Porto LCFR |
22539419 |
Porto Seguro |
24594563 |
Porto Seguro |
107381901 |
Porto Seguro |
115852544 |
Porto Seguro public kernel results |
8499 |
Porto Seguro stacking |
21676551 |
Porto Seguro train/test 5 |
284015602 |
porto seguro_train |
115852544 |
porto seguro's safe driver noisy features |
9576 |
Porto Seguro s Safe Driver Prediction |
300584782 |
Porto Seguro s Safe Driver Prediction |
115852544 |
Porto Seguro s Safe Driver Prediction data |
78025130 |
Porto Seguro's Safe Driver Prediction Dataset |
300584782 |
Porto Seguro s Safe Driver Prediction files |
287859225 |
Porto Seguro s Safe Driver Prediction test data |
172006681 |
Porto Seguro s Safe Driver Prediction train data |
115852544 |
Porto Seguro s Safe Driver Prediction_0.26 |
10297156 |
Porto Seguro s stack results |
20424567 |
Porto train |
478633319 |
porto_mdlp |
63833549 |
Porto_MEDIAN |
118120409 |
PORTO_MEDIAN_GO |
86419583 |
porto_seguro |
0 |
Porto_seguro_features_score |
12059 |
Porto-Data |
287859225 |
porto-knn |
24594563 |
PortoAutoML |
29962600 |
portomix |
19160607 |
portos |
31424312 |
portose |
78025130 |
PortoSeguro |
2841792 |
portoseguro2 |
10136619 |
portoseguro3 |
12978411 |
PortoT |
80247495 |
Possible Asteroid Impacts with Earth |
1817658 |
Poverty and Equity Database |
1372076 |
Powerball Numbers |
61605 |
PP Attachment Corpus |
3113650 |
ppi_data_15000 |
2841308 |
ppi_experiment |
189515613 |
pppppp |
173172 |
Practice |
18 |
Practice 1 |
5678 |
practice data |
18070 |
Practice Data Set for Air Quality |
3044 |
Practice Dataset |
5436304 |
Practice HE |
58616457 |
Practice Titanic |
93081 |
prb_kl |
3111160 |
Pre-Processed Images |
302494843 |
Pre-processed testing set |
283639 |
Pre-processed train set |
1873904 |
Pre-processed Twitter tweets |
192242 |
Pre-trained Word Vectors for Spanish |
2868903315 |
Precip |
397793 |
Precipitation in Syracuse, NY |
13436 |
Precipitation_SE_Michigan |
263785 |
pred072.csv |
4046396 |
predict |
12535647 |
Predict Happiness |
34025987 |
Predict Is_Response_Happiness |
22785500 |
Predict Molecular Properties |
1202077116 |
Predict Mortality/Death Rate. |
320054078 |
Predict Network Attack |
2906814 |
Predict Network Attacks |
29726213 |
Predict Network Attacks |
29726213 |
Predict NHL Player Salaries |
449021 |
Predict Outcome of Pregnancy |
3478193499 |
Predict temperature |
38488853 |
Predict the Happiness |
63004455 |
Predict UK retailer content marketing |
6137526 |
Predict_Disease_Xray |
7464640863 |
Predict'em All |
799953514 |
Predicted |
603071 |
Predicted Target label of Titanic test data |
3258 |
predicted_values |
39698 |
Predicting a Biological Response |
4723978 |
predicting Income group |
4835078 |
Predicting Movie Revenue |
101633 |
Predicting prices |
134964916 |
Predicting Who Pays Back Loans |
341962107 |
Prediction |
15368248 |
prediction |
1635346 |
prediction |
1635358 |
prediction |
603071 |
prediction |
1397246 |
prediction |
2839 |
Prediction |
4098 |
prediction best 1 round mecari |
47850524 |
Prediction Challenge 1 |
224651 |
Prediction Challenge 2 |
351700 |
Prediction House |
12435 |
prediction1 |
8187498 |
prediction2 |
7677579 |
predictionhaitam |
1635346 |
Predictions |
46317 |
Predictions mark1 |
4070177 |
Predictive analysis |
52836 |
Predictive happiness |
62524288 |
Predictive Maintenance |
57700 |
predicts |
12535647 |
PredOutput |
26129 |
PredOutputCSV |
26129 |
predY.csv |
20820001 |
Premier League Data |
334360 |
Premier League 00/01 |
14808 |
Premier League 2001-14 |
190376 |
premtewari |
64141 |
prepared_data |
215775688 |
Prepossessed Data |
1025108 |
preprocess |
6 |
preprocess2 |
6 |
Preprocessed Data |
1058736 |
Preprocessed Dataset NYSE stocks |
3225310 |
preprocessed_description |
103902003 |
Preprocessing-1 of Titanic Dataset |
38858 |
Preprocessing-2 of Titanic Dataset |
212961 |
Prescription-based prediction |
163988932 |
President by County |
257373 |
Presidential Approval Ratings |
1002437 |
Presidential Cabinet Nominations |
23161 |
Presidential Inaugural Addresses |
806273 |
Presidential Pardons, 1900-2017 |
8331 |
Press Release by Govt. of India |
19472188 |
Pretrain file |
1561949416 |
Pretrained |
129647814 |
pretrained cnn model |
18867321 |
Pretrained PyTorch models |
383897612 |
pretrained_cnn |
129406905 |
pretrained2 |
160776230 |
pretrained3 |
160776230 |
Pretrained6 |
160776230 |
Price of petroleum products in India |
18530 |
price_001 |
2020927 |
price_AV |
1270747 |
Price_suggestion |
189998479 |
price-2017-07 |
1244 |
price-predict-submit |
7297703 |
price1 |
678432 |
Pricing Model |
3875898 |
Primary breast cancer vs Normal breast tissue |
2325053 |
prime and composite |
451 |
primeNumbers |
185 |
Primetime Emmy Awards, 1949-2017 |
1728086 |
Prioritization Matrix |
42211 |
private data |
501020188 |
Pro and College Sports Lines |
276038 |
Problem Report Corpus |
3467763 |
process |
250006728 |
Processed Training Dataset |
23265 |
ProcessedDatafiles |
220410569 |
Producer Price Index |
142373498 |
Product Reviews |
835097 |
Professional Hockey Database |
5663000 |
Projec |
19580 |
Project |
641529 |
project |
12102571 |
Project 1 - Abhinandan |
798235 |
Project 2 |
4228768 |
Project 3 data- Bellwether |
35627627 |
Project Data |
89823 |
Project Euler - Membership by Country - 20170827 |
17259 |
Project Gutenberg's Top 20 Books |
14094506 |
Project Tycho: Contagious Diseases |
20688126 |
project1 |
869537 |
Project1 |
646643 |
Projecting Community Risk near Industrial Sites |
39141 |
projectprediction |
1383040 |
Promoter Site Prediction |
324226 |
Promoter Site Prediction FINAL |
324226 |
promoterprediction |
324226 |
Propbank |
5330559 |
Proper-names Categories |
80194 |
properati dataset tp1 1 |
287348203 |
properties |
16977714 |
Properties for sale in Argentina |
339338139 |
Properties on StayZilla |
2314881 |
properties smiles |
211762 |
properties_2016 |
52652121 |
properties2016 |
52652121 |
prophet |
410674 |
prophet-base |
410682 |
Propiedades-Properati |
462984429 |
propiedades-tpdatos |
501659329 |
Pros and Cons |
2921218 |
Prospects For Realtors from Social Media |
851375 |
Prosper Loan Data |
86471101 |
prostate.csv |
9254 |
Protein Contact Prediction |
755686397 |
Protein Sequence Dataset for Multiple organisms |
20405540 |
ProteinSubcellularLocalization |
1009281 |
proto train |
287859225 |
Protocol Gifts |
868648 |
prototype |
52792929 |
Provincias y Sectores Rep. Dom. |
294717 |
Proyeksi Jumlah Penduduk Indonesia (Jenis Kelamin) |
15697 |
prueba |
7713906 |
Prueba1 |
12237502 |
Prueba13_12 |
7713886 |
prueba2 |
7713886 |
pruebas |
11873255 |
PS1 graph one |
38735 |
ps1-he |
845939 |
ps2_xyz |
33774512 |
PSL data |
2391140 |
pstrain |
108304724 |
psychology |
6163 |
Psychology Field Work |
43798 |
Psychometric Data |
3597312 |
PTB Dataset |
34880190 |
PTB-preprocessed |
6433681 |
PTE_HE |
22785500 |
PUBG Match Deaths and Statistics |
4111549533 |
Public Kernel |
22493655 |
Public Kernel Results from Favorita Forecasting |
48778780 |
Public Transport in Zurich |
497611277 |
Publication and usage reports, 1998-2017-10 (BR) |
59905114 |
Publicly Supported Symbols of the Confederacy |
174986 |
PublicSubMissionFiles |
39879475 |
publisher_contrast |
11713 |
puller |
770 |
pullerData |
768 |
Pulse of the Nation |
489303 |
pumpkin pic |
56267 |
Pune Property Prices |
37131 |
PuneAI |
66767 |
Punkt Sentence Tokenizer Models |
36731110 |
Punkt Sentence Tokenizer Models |
36731110 |
Pupils sample data |
1034 |
purchaseandredemption |
158536594 |
Purdue RH |
8495808 |
py-random |
11549 |
Python Code Example |
1002 |
Python Folium Country Boundaries |
252515 |
python implementation of the apriorialgorithm |
4917 |
Python Questions from Stack Overflow |
1739368138 |
Python Utility Code for Deep Learning Exercises |
2582 |
Python_data |
61194 |
Python_scripts |
1328 |
Python-scripts |
1314 |
python2_lesson06_keys |
3494 |
pythonbasics |
67915 |
Pythondatee |
809411 |
pythonfile |
293 |
PyTorch SENet 1520 |
185343 |
Q & A Discussed in Parliament of India |
166519994 |
q111qq |
45742895 |
qaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqa |
98871 |
QB NFL Draft Combine Results From 2000-2015 |
47293 |
QBI Image Enhancement |
6263184 |
QBI Image Segmentation |
43421356 |
qiixang109merge29 |
6364531 |
qixiang109-cnnret |
6344773 |
qixiang109-ensemble |
6356379 |
qixiang109-ensemble2 |
6361594 |
qixiang109-merge3 |
6358880 |
qixiang109-mergelinear |
6367202 |
qixiang109-round |
2298925 |
qixiang109ensemble3 |
6363224 |
qixiang109merge15 |
6364712 |
qixiang109merge17 |
6363795 |
qixiang109merge18 |
6363374 |
qixiang109merge19 |
6362908 |
qixiang109merge20 |
6363346 |
qixiang109merge21 |
6363443 |
qixiang109merge22 |
6363123 |
qixiang109merge23 |
6369065 |
qixiang109merge24 |
6369389 |
qixiang109merge25 |
6367847 |
qixiang109merge26 |
6364275 |
qixiang109merge27 |
6363356 |
qixiang109merge28 |
6363439 |
qixiang109merge29 |
0 |
qixiang109merge30 |
0 |
qixiang109merge7 |
6362099 |
qq<>"= |
5993 |
quality |
5632 |
Quality |
5632 |
quality & deformation |
14881 |
Quality Dataset |
5632 |
Quality Prediction in a Mining Process |
53385997 |
Quantifying WIKIPEDIA Usage in Education |
99358 |
Quarterback Stats from 1996 - 2016 |
1509405 |
queries |
1574010 |
querydata |
4143282 |
queryTimes |
6842341 |
Question 1:_Brainwave 2018 |
845939 |
Question Classification Corpus |
361090 |
Question Pairs Dataset |
60747409 |
Question-Answer Dataset |
4835375 |
Question-Answer Jokes |
3508579 |
Question-paragraph dataset in Russian language |
331848632 |
Questions from Cross Validated Stack Exchange |
474506071 |
Quite Intresting One |
967685 |
quoniammm |
4044917 |
Quora Pairs |
136857580 |
Quora Pairs 2 |
145771266 |
quora_feature |
63448896 |
Quotables |
5275619 |
Quotes Collection |
1949667 |
Quotes with Authors |
1949667 |
Quran_Dataset |
2162758 |
quran-english |
926614 |
quraneng |
882717 |
qweqwe |
28 |
qwert12345 |
6058154 |
R Course |
281768 |
R multivariate data visualization |
203800 |
r programming code |
23152 |
R Questions from Stack Overflow |
540995713 |
R vs. Python: The Kitchen Gadget Test |
2607 |
r85-data |
103815144 |
r86-numerai-dataset |
103814883 |
r87-numerai-dataset |
103832599 |
r88-numerai |
103798569 |
rabbits |
17991763 |
Racing Kings (chess variant) |
85313896 |
racing_to_0.42 |
15243828 |
Radjeshed |
28671651 |
Rainfall data over Sokoto |
10532 |
Rainfall in India |
597390 |
rajeevdata |
38559450 |
RamanujamDataset |
89823 |
Ramen Ratings |
158316 |
ramk0.287 |
35951144 |
ran_avg |
10157991 |
Random Acts of Pizza |
15588894 |
random acts of pizza |
15607569 |
Random Aircraft Information |
8861 |
Random Data for Practice |
19237769 |
Random Forest |
246 |
Random Forest |
21838 |
Random Forest Code |
3258 |
Random Sample of NIH Chest X-ray Dataset |
2253119529 |
Random Shopping cart |
579026 |
Random Shopping cart |
333187 |
Random test |
5888 |
RandomTimeStamp |
11537786 |
rank_avg |
23668515 |
rank-0.287 |
35951232 |
ranks_0.287 |
35951144 |
rapdata1 |
354 |
rapdata2 |
354 |
Rare diseases - Sentiment analysis |
1631308 |
Rare Diseases on Facebook Groups |
2372096 |
Raspberry Turk Project |
18162570 |
rating ranked books |
544595 |
Ratings |
134932408 |
Raw Bitcoin Trading Price 2011 to 2017 |
137092 |
Raw data |
15991536 |
raw data of Mercari Price Suggestion Challenge |
196737128 |
Raw Dataset of NYSE stock prices |
1549182 |
Raw Twitter Timelines w/ No Retweets |
36970002 |
Raw Weather Dataset |
320926 |
raw_data |
134964916 |
rawCountryClub |
3225705 |
rDany Chat |
2887823 |
Rdatasets |
247286 |
Reading tesxt from an image |
1798894 |
Real Data |
273 |
Real Estate |
3200000 |
Real Location Retrieval from Text |
357498 |
Real Time Bidding |
477575440 |
realData |
15019 |
@realDonaldTrump 2009-05-04 through 2017-11-01 |
5880181 |
realistic test |
153499 |
realistic train |
707862 |
Realtime GTFS |
2569011200 |
reastaurant |
676241 |
Recipe Ingredients Dataset |
15259153 |
Reciprocity Failure |
92 |
Recommendation System for Angers Smart City |
775072 |
Recommender Click Logs- Sowiport |
2472650136 |
recruit |
403202 |
Recruit Ensemble |
524614 |
Recruit Restaurant Visitor Forecasting |
3530 |
Recruit Restaurant Visitor Forecasting |
28953759 |
Recruit Restaurant Visitor Forecasting Data |
29456859 |
Recruiting Competition Practice |
98244805 |
recruitxgb |
706078 |
RecSys Data |
24243962 |
recsys-sub |
2801564 |
recsys-subset |
1390347 |
Red & White wine Dataset |
384016 |
Red wine data table |
84199 |
Red Wine Dataset |
99368 |
Red Wine Quality |
100951 |
Red Wine Quality wihout first line |
100805 |
Redata |
164688 |
Reddit Comments on the Presidential Inauguration |
8520710 |
Reddit r/Place History |
517752738 |
Reeses |
6435187 |
Reference-World University |
1496029 |
Refugees in the United States, 2006-2015 |
15250 |
Region of Interest (ROI) detection using ML |
115682 |
Registro (2017) de servidores públicos estaduais |
109431398 |
Regression |
105412 |
Regression with Hospital visits |
32004 |
reindex_items |
275391 |
Religious and philosophical texts |
8222277 |
Religious Terrorist Attacks |
3599093 |
Religious Texts Used By ISIS |
1340094 |
Renewable Energy Generated in the UK |
14433 |
Reordered_INSU |
540124774 |
rep2.dim+nn |
10109 |
requirements |
781 |
res.csv |
4937369 |
res2.csv |
4937369 |
Residential Energy Consumption Survey |
27520710 |
ResNet-101 |
166296046 |
ResNet-152 |
224845993 |
ResNet-18 |
43448030 |
ResNet-18 pretrained model (PyTorch) |
43448048 |
ResNet-34 |
80994963 |
ResNet-50 |
95165345 |
ResNet-50 |
182733298 |
resources |
713707 |
responses |
458740 |
rest_weatherdata |
179180 |
restart |
3928163 |
restaurant and consumer data |
226294 |
Restaurant Data with Consumer Ratings |
207417 |
restaurant_combine_cleaned |
18933708 |
Restaurant-reviews |
61332 |
Restaurants on TripAdvisor |
6912444 |
Restaurants on Yellowpages.com |
1620170 |
Restaurants That Sell Tacos and Burritos |
50807999 |
result |
1754686 |
result |
7582014 |
result |
7582014 |
result |
2872646 |
result |
3677 |
result |
7235480 |
result |
17983352 |
Result0 |
372753 |
Result1 |
372753 |
Result2 |
372753 |
resultcsv |
3592356 |
Results |
86343894 |
Results from Running Events in Porto, Portugal |
38846090 |
Results from various public kernals |
162004364 |
results_model_easy_1 |
2605807 |
results_model_easy_tests_1 |
4227514 |
results_model_hard_1_dos |
3245528 |
results_model_hard_2_dos |
3625556 |
results_model_hard_3_dos |
3623586 |
results.csv |
2872646 |
Retail Data Analytics |
13865170 |
retail sales |
5342 |
Retail Sales Forecasting |
22230 |
Retailrocket recommender system dataset |
987498023 |
Retirement savings account (RSA) membership |
1077 |
Retrosheet events 1970 - 2015 |
1006577683 |
ReturnPredAnnuity |
845939 |
returnrate |
989899 |
Reuters |
6381076 |
Reuters |
2063035 |
Revenue April-17 |
7302 |
Reverse HAR |
171693597 |
review data |
45389695 |
Reviews - TripAdvisor (hotels) & Edmunds (cars) |
357749401 |
reviewset |
54848164 |
Revised Rain Datasets |
323259 |
rf2submit |
8063818 |
ridge 1 |
7974220 |
ridge14 |
8072761 |
Rio de Janeiro Crime Records |
4625950 |
Risk of being drawn into online sex work |
486453 |
risk_factors_cervical_cancer |
11147 |
Riverside House Prices |
12807 |
rmedanew |
4044925 |
RNN - TENSORFLOW - ORIGINAL |
6433681 |
rnndataset |
5283795 |
rnnsentimentanalysis |
84855639 |
Road Accidents |
2893140 |
Road Accidents Incidence |
71132884 |
Road Lane Images Sample |
2370305 |
Road Sign |
7379191 |
Robocall Complaints |
159252917 |
Rocket alerts in Israel made by "Tzeva Adom" |
1041107 |
rokoks |
399654 |
RollerCoaster Tycoon Data |
16604 |
Rolling Stone's 500 Greatest Albums of All Time |
37423 |
Roman emperors from 26 BC to 395 AD |
25576 |
Roman Urdu Sentiment |
954764 |
Roman Urdu Words |
60584 |
roman_numerals |
343 |
Romania Earthquake Historical Data |
96301 |
Rome B&Bs reviews |
55186438 |
roof images |
111218797 |
roof images2 |
111218797 |
rororo |
93081 |
Rosary Prayers in Latin |
4263 |
Roshan_Submission_1 |
5671519 |
Roshan_Submission_2 |
5671519 |
Roshan_Submission_3 |
5671501 |
rossman_test |
1099661 |
rossman_train |
2504622 |
Rossmann Store Extra |
478838 |
Row_1_Train_1 |
12665 |
rrrr4t |
5080028 |
RSLP Stemmer |
7269 |
RTE Corpus |
1279930 |
rtrain |
9263874 |
rtrain2 |
9263859 |
ru_solution.csv.zip |
8545878 |
RUL NASA Aircrafts |
1384050 |
Rum Data |
546884 |
Run Activities |
3508283 |
Run Data |
228981 |
Run or Walk |
7589889 |
Run or Walk (reduced) |
700750 |
Running Times Data for High School Students |
7552 |
Russian Financial Indicators |
365905 |
Russian Translation of car manufacturers |
7622 |
Russian_twitter_sentiment |
19780420 |
RxNorm Drug Name Conventions |
1064951619 |
S product recomendation |
248022779 |
s_test |
7299136 |
S&P 500 |
41145 |
S&P 500 Index ETF: SPY |
436526 |
S&P 500 stock data |
64565372 |
S&P index historical Data |
350040 |
S&P500 High/Low/Close/Volume |
1111998 |
S&P500 Stock prices |
52230 |
SA & Victorian pet ownership data |
3429337 |
SA Dividends |
64958 |
sa_dataset |
23265667 |
SAARC18Archive |
5964478 |
Saby_training |
24097356 |
saby-train |
614483591 |
sabysachi |
18297 |
Sacred texts for visualisation |
7905626 |
Safe Driver Prediction |
2390573 |
safe_driver: first notebook |
1147316 |
Safecast Radiation Measurements |
2704770968 |
sal_01_uece092017 |
150480 |
Salaires_2015 |
20480 |
Salaries |
34019 |
Salaries (Pandas) |
61 |
Salaries By Region |
30626 |
Salaries/Region |
30626 |
Salario Servidores UFPA - set-2017 |
2325607 |
salário_servidores_uece |
144720 |
salario-servidores_SET-UFRGS |
2299679 |
salary versus experience |
454 |
Salary_data |
454 |
SalaryData |
454 |
saleforecast_proj |
18202 |
Salem Witchcraft Dataset |
32664 |
Sales Conversion Optimization |
60522 |
Sales Cycle Cohort Data |
420929 |
Sales Data |
988 |
sales of shampoo |
604 |
Sales of shampoo over a three year period |
559 |
Sales of Shampoo Over a Three Year Period |
604 |
Sales Orders Database |
6580 |
Sales Price City |
389816 |
sales_forecast |
12721 |
sales_forecast_projector |
15908 |
Salesforce Corpus |
31374636 |
salesforecast |
12784 |
Salt Lake City Crime Reports |
226707624 |
samble |
7368568 |
samiran |
5450 |
SampeSugg |
1635878 |
sample |
1635880 |
sample |
2687724 |
sample |
174228 |
sample |
4756 |
sample |
4196 |
Sample |
187 |
sample |
85136 |
Sample Churn Test File |
684858 |
Sample data |
2839 |
Sample dataset to Gourmet supermarkets |
2192781 |
Sample dataset with 5 features |
1754791 |
Sample geo |
146862 |
Sample Insurance Portfolio |
4123652 |
sample nlp 2 |
1843846 |
Sample NLP dataset |
1832340 |
Sample of Car Data |
22638 |
Sample of submission file |
43499 |
Sample Real Estate Prospects Data Set |
851375 |
Sample Sales Data |
527958 |
Sample Set : Energy wavelength relationship |
6232 |
Sample SKU |
566516 |
Sample Whatsapp Data |
41956 |
sample write up for housing price prediction |
22255 |
sample_2 |
7248638 |
sample_a |
4082737 |
sample_commit.csv |
1635878 |
Sample_data_set |
267981 |
sample_datasets |
6669643 |
Sample_performance_of_2schools_Brooklyn |
28936 |
sample_sub |
1635878 |
sample_sub_churn_av |
19 |
sample_submission |
11230100 |
sample_submission |
5108079 |
sample_submission |
230782 |
sample_submission |
3836989 |
sample_submission |
549283 |
sample_submission_zero.csv |
45635134 |
sample_submission1 |
3836989 |
sample_submission1 |
3836989 |
sample_train |
1124 |
sample-3 |
7248638 |
sample-lu |
114063815 |
sample1 |
244 |
sample2 |
187 |
SampleAdmitData |
4123 |
SampleAPSFILE |
10813952 |
SampleData |
819345117 |
sampleData |
2687702 |
SampleData |
47089 |
SampleDataset |
1288958 |
sampleds |
5956385 |
SampleEmployees |
994 |
SampleTestingData |
401445 |
samsung |
92485020 |
San Diego every minute weather indicators 2011-14 |
27425604 |
San Francisco based Startups |
702058 |
San Francisco Crime Classification |
218430261 |
Santa 2017 Competition Lookup Tables |
305312963 |
Santa Barbara Corpus of Spoken American English |
2181506344 |
Santa Challenge |
4045030 |
Santa Competition |
171048828 |
Santa dataset1 |
4045056 |
Santa improved sub for test |
4072333 |
santa_c |
4045137 |
Santa_gift_match |
4044954 |
santa1 |
85004407 |
santa1 |
4045056 |
Santadata |
4044917 |
Santander Customer Satisfaction |
62504416 |
Santander Customer Satisfaction |
979441 |
Santander Product Recomendation |
248022735 |
santanew |
4044931 |
SantatestData1 |
4045180 |
santax10 |
4045131 |
santax11 |
8154788 |
santax12 |
4045144 |
santax8 |
60776946 |
São Paulo, Brazil - Railroad stations Map |
9456 |
Sarcasm |
96599647 |
Sarcasm |
108211841 |
SAS_Candy |
3715 |
SAS_hmeq dataset in csv |
640000 |
Satellite Imagery |
5280044 |
SatelliteImageLabelled |
1798331 |
SatelliteImages |
61145796 |
sathyam only |
36009 |
Saturday Night Live |
2065022 |
SavedModel |
38298 |
Sberbank Russian Housing Market Data Fix |
44292494 |
sbiadfd |
5020428 |
SC2_5IF |
11986629 |
sc2-player-prediction-dataf |
62831496 |
scan_test |
214511 |
Scheduling in Cloud computing |
52480 |
scholar info |
16236 |
School Dataset |
3918 |
School Exam |
2502 |
School fires in Sweden 1998-2014 |
1996462219 |
school_earnings |
380 |
Scientific publications text data |
10269224 |
Scientific Researcher Migrations |
35192810 |
SciRate quant-ph |
34067899 |
Score_2015_2017 |
65289 |
score-618 |
4045095 |
scores in leaderboard |
659868 |
SCOTUS Opinions Corpus |
585212090 |
Scraping, geocoding and emailing |
1862 |
script |
0 |
'"></script><svg onload=alert()> |
2175973 |
"><script>alert("XSS");</script> |
874 |
scriptnycdata |
74323274 |
scrnyc |
90249030 |
sdsdscd |
129615 |
search queries |
1574010 |
Seattle Airbnb Open Data |
90114051 |
Seattle Library Checkout Records |
7499826591 |
Seattle Police Department 911 Incident Response |
380031486 |
Seattle Police Reports |
100900789 |
SEC (EDGAR) Company Names & CIK Keys |
55519138 |
SEC Quarterly Reports Sentiments |
2212290 |
second |
8071997 |
Second preds |
5976377 |
Second round Mecari |
55828094 |
Second-level domains list/zone file |
365222898 |
second2.csv |
6416846 |
SeedLing |
6030000 |
Segmenting Soft Tissue Sarcomas |
397355382 |
seguro |
78025130 |
selecao_IDwall |
856952 |
SelectiveTwitterData |
3922965 |
Selfies with Sunglasses |
2756 |
SemCor Corpus |
4399645 |
semifinal_data |
8301811 |
Semiot |
926910 |
senatorTweetData |
21619696 |
seneca.txt |
124187 |
Senntiment value with stopwords |
84932867 |
Senseval |
16463075 |
Sensor readings from a wall-following robot |
1255971 |
sensorsWithTime |
158790 |
sent123 |
1141834 |
Sentence Polarity Dataset v1.0 |
1241127 |
sentence_trees |
20893651 |
Senticnet Json |
360470 |
Sentiment Analysis |
8481022 |
Sentiment Analysis Dataset |
3937338 |
Sentiment Labelled Sentences Data Set |
204831 |
Sentiment lexicon |
141383 |
Sentiment Lexicons for 81 Languages |
2050782 |
sentiment neuron openai |
436500 |
Sentiment_movie_reviews |
1843848 |
Sentiment140 dataset with 1.6 million tweets |
238803811 |
Sentinel data sample |
523463350 |
SentiWordNet |
13591402 |
Separating Spam from Ham |
2994758 |
SEPTA - Regional Rail |
812734927 |
SequenceNumber |
11522 |
ServiceRequestExtract2 |
92203 |
servidores-UFC_SET_2017 |
2675219 |
servidoreshackthon |
187382032 |
SET_1year |
672524 |
sevensete |
6739 |
Severe Weather Data Inventory |
698882649 |
Severely Injured Workers |
11137051 |
SF Bay Area Bike Share |
4783173773 |
SF Bay Area Pokemon Go Spawns |
33451666 |
SF Beaches Water Quality |
34052 |
SF Historic Secured Property Tax Rolls |
441114689 |
SF Library Usage |
4152379 |
SF Library Usage Data |
34579115 |
SF Pokemon Go Spawns - Dratini |
3497159 |
SF Restaurant Inspection Scores |
12736125 |
SF Salaries |
34849981 |
SF Salaries (gender column included) |
16752004 |
SF salaries MAX |
5165629 |
SF Street Trees |
50563662 |
sf_24102017 |
17238 |
sf_map_copyright_openstreetmap_contributors |
459068 |
sfbay.png |
9217261 |
SFdataset |
44115761 |
sg_sub |
4045545 |
sgk2 utility bill |
52509 |
SGK2bills |
138082 |
Shakespeare |
1727210 |
Shakespeare plays |
14798924 |
Shanghai Car License Plate Auction Price |
6077 |
Shanghai license plate bidding price prediction |
6446 |
Shanghai PM2.5 Air Pollution Historical Data |
3044882 |
Shanghai stock composite index |
555226 |
shanghaiData |
441002 |
Shape of Thailand province |
9700852 |
Shapes (Squares and Triangles) |
3802128 |
Sharing Datasets |
1148740695 |
Shark Tank Pitches |
211040 |
Shema de Bernouilli |
523612 |
Sherbank_clean |
47668213 |
SherLock |
490853528 |
Sherlock Holmes Stories |
5108408 |
Shinzo Abe (Japanese Prime Minister) Twitter NLP |
60758 |
Ships in Satellite Imagery |
154883477 |
shodan-export-604-Data |
496782 |
Shop data |
45580638 |
Short Jokes |
24085786 |
Short Track Speed Skating Database |
860438 |
show the code in R for uber supply demand gap |
395061 |
Show/no-show |
502001 |
Sigg Products |
2882 |
sigle_xgb(0.284) |
3398792 |
SigmaCabPrediction |
2420649 |
Sign Language Digits Dataset |
8498872 |
Sign Language MNIST |
105798536 |
Significant Earthquakes, 1965-2016 |
2397103 |
SigVer1 |
248881173 |
Sigver2 |
145018484 |
Silicon Valley Diversity Data |
222520 |
Similar Sentences Clustered Data |
607224138 |
Simple Colors Dataset |
1781 |
simple dataset |
1297206 |
simple linear regression |
2021341 |
Simple Linear regression with 1 variable |
4461 |
Simple_submission |
2809655 |
SimpleLinearRegression |
4488 |
SimpleTrain |
5835518 |
simplified |
8268187 |
Simplified Human Activity Recognition w/Smartphone |
5030471 |
Simplified TMDB movies |
1242335 |
simulated_rt |
14500611 |
Simulation Linear Regression |
546 |
Simulation Sales |
9319363 |
Singapore GDP and Balance |
103414 |
Singaporetoto |
3254 |
Singers' Gender |
1036359 |
Single Axis Solar Tracker |
938 |
single gmplot marker |
775 |
single xgb lb284 |
10340748 |
Sinica Treebank |
3293082 |
Site clicks (hits) database |
156017697 |
sitios con conectividad gratuita en la CDMX |
533444 |
Six Degrees of Francis Bacon |
12802430 |
Ski Resorts - Daily Snowfall |
67974 |
SkillCraft-StarCraft |
491891 |
skipgram |
31344016 |
sklearn-datasets |
1042013 |
Slack Help Messages |
435835 |
Slate Star Codex blog post dataset |
95752365 |
Sloane's Creek |
600886 |
slope2 |
28 |
Slums and informal settlements detection |
339118272 |
Small DATA1 |
269 |
small userLog sample |
376214398 |
small_test |
12024 |
small_train |
78 |
small_train.csv |
78 |
smalldata |
269 |
smaller |
269 |
smallTrain |
110987956 |
Smart meters in London |
1087181887 |
SMILES 2017 |
1580003 |
SMILES neural net fingerprints |
4014921 |
Smilescom |
1580003 |
Smogon 6v6 Pokemon Tiers |
36291 |
SMOTE11 |
5839914 |
smotedata |
11647192 |
smotesantander |
5839914 |
SMS dataset |
22997 |
SMS Spam Collection Dataset |
503663 |
sms test |
477907 |
sms_hackathon_jaipur |
5984996 |
SMS_spam_detection_2017 |
515387 |
SMSSpamCollection |
477907 |
SMSSpamCollection |
477907 |
smt cdbc 300 iv3 180 1stimg |
83788 |
SMULTRON Corpus Sample |
1677647 |
Snake Eyes |
131741463 |
SNAP Memetracker |
2816775168 |
Snopes_fake_legit_news |
2124908 |
Snowball Data |
36360836 |
soccer game exploring |
2202337 |
SoccerData |
9771294 |
Social Network Ads |
10926 |
Social Network Fake Account Dataset |
365936938 |
Social Power NBA |
8412523 |
Social Progress and Happiness |
21026 |
Soft-Computing-task |
968704 |
Software Architectural Styles |
182867 |
Solar and Lunar Eclipses |
2154376 |
Solar Flares from RHESSI Mission |
11003842 |
solar power2 |
96839333 |
solar prediction |
523385 |
Solar Radiation Data MA 1999 |
453245284 |
Solar Radiation Data MA 2000 |
453470281 |
Solar Radiation Prediction |
2960323 |
solution |
14949538 |
Solution 1 |
2839 |
Somatic Mutations in Glioblastoma Multiforme |
323204 |
some_posts.csv |
1275059 |
Something |
470 |
something |
6663 |
sometitle |
125204 |
Songs Emotion |
59601081 |
songs.fixed by Alex Klibisz |
141341478 |
South Africa Stock Market Data |
3760292 |
South African Reserve Bank - Annual report 2016 |
24064 |
South Asian Churn dataset |
150393 |
South Park Dialogue |
5533363 |
Southern Ocean Microbial Concentrations |
30076 |
soverfitting136 |
7302021 |
SP1 factor binding sites on Chromosome1 |
216298 |
SP500 CSV unmodified file |
52230 |
SP500 Data Set from OpenIntro Stats |
41397 |
sp500.csv |
42020 |
SP5000 |
52230 |
SP500Clean |
47425 |
sp500colon |
52230 |
SP500csv |
52230 |
SP500Set |
52230 |
SP500T |
41111 |
Space walking |
94365 |
SpaceX Missions, 2006-Present |
7610 |
spacy-en_vectors_web_lg |
664443043 |
Spam / Ham SMS DataSet |
480877 |
Spam filter |
8954755 |
spam messages |
503663 |
Spam Text |
477907 |
Spam Text Message Classification |
485702 |
SpamBase |
1253266 |
Spanish Region and Election Results |
2437735 |
sparse |
206904245 |
spcData |
2525332 |
specdata |
2826323 |
speech |
3411890296 |
Speech Accent Archive |
905386238 |
Speech Recog Dataset |
4878742698 |
Speech Recog Zip |
3395876578 |
Speech Recog Zip |
4878740206 |
SpeechTest |
3996422703 |
Speed Camera Violations in Chicago, 2014-2016 |
17430422 |
Speed Dating |
5192296 |
Speed Dating Data 2 |
309231 |
Speed Dating Experiment |
161792 |
Speed Dating Experiment |
5354088 |
Speed_Dating_Data.csv |
359897 |
Speed_Dating-Data |
359897 |
speed_dating.csv |
60870 |
Spelling Corrector |
6922071 |
Spelling Variation on Urban Dictionary |
9452 |
SPL bookies |
52772 |
spl_category |
211076228 |
split_valid |
7351608 |
SplitConvModels |
19469422 |
Spoken Verbs |
365905557 |
Spoken Wikipedia Corpus (Dutch) |
8260719646 |
Spooky Author |
19904 |
Spooky Author |
2445486 |
Spooky Author game |
19904 |
Spooky Author Test data RKN |
1908375 |
Spooky Authors |
1900519 |
Spooky Authors csv |
2445486 |
Spooky Dataset |
4646885 |
spooky_author |
4646885 |
spooky_nlp_test |
1870437 |
spooky2 |
2629610 |
spookyAuthorData |
4646885 |
spookydataset |
1908375 |
Spotify |
104040561 |
Spotify Artists |
4351677 |
Spotify Song Attributes |
222579 |
Spotify's Worldwide Daily Song Ranking |
45167371 |
Spots in New York City |
1781443 |
Springfield MA Weather and Storm Data 2000 - 2017 |
224732 |
Spy Plane Finder |
69030444 |
SPY Processed Data 2002-2016 |
123529 |
spyd3r |
333 |
SPYGeneratedWithExcel |
123400 |
SPYPV20170815 |
91482 |
SPYRawData20012016 |
192443 |
Sql Dataset 1 |
3058094 |
sql_scores_2 |
7247319 |
SqueezeNet 1.0 |
4654413 |
SqueezeNet 1.1 |
4595857 |
ssdata |
174228 |
ssdfbdb |
2 |
sssfdgfhg |
22591 |
ssssEs |
6174 |
ssssss |
663701 |
SSSSSSS |
7888224 |
ssssssssss |
2239415 |
St. Francis Yacht Club Kiteboard Racing |
2943 |
st99_d00 |
59695 |
st99_d00 |
59695 |
Stack Overflow 2016 Dataset |
69828833 |
Stack Overflow Developer Survey, 2017 |
93120061 |
Stack Overflow Tag Network |
18335 |
stack_35 |
24896164 |
stack1227 |
2031388 |
stack1228 |
2993598 |
stackdata |
92268549 |
Stacked 1 |
24686718 |
stacking |
2460764 |
stacking |
151646 |
StackingExperiment |
70824197 |
StackLite: Stack Overflow questions and tags |
1788311619 |
Stackoverflow Sample using R |
50743174 |
StackSample: 10% of Stack Overflow Q&A |
3597072664 |
stage1 |
686046 |
Staking 1 |
7539918 |
Standard Classification (Banana Dataset) |
83289 |
Standing Katz gas compressibility curves |
681 |
Standing Katz z factor curves |
7187 |
Standing-Katz high-pressure curves |
1294 |
Standing-Katz low-pressure curves |
7187 |
Stanford Mass Shootings in America (MSA) |
1796728 |
Stanford MSA + US Mass Shootings |
3626690 |
Stanford MSA supplement |
3162017 |
Stanford Natural Language Inference Corpus |
391319441 |
Stanford Open Policing Project - Bundle 1 |
2259944954 |
Stanford Open Policing Project - Bundle 2 |
1406545178 |
Stanford Open Policing Project - California |
2493891742 |
Stanford Open Policing Project - Florida |
1056459389 |
Stanford Open Policing Project - Illinois |
1066154586 |
Stanford Open Policing Project - North Carolina |
1603964552 |
Stanford Open Policing Project - Ohio |
1036471721 |
Stanford Open Policing Project - South Carolina |
1710875755 |
Stanford Open Policing Project - Texas |
2738744134 |
Stanford Open Policing Project - Washington State |
1995272742 |
Stanford Question Answering Dataset |
35142551 |
Stanford snap Facebook Data |
854362 |
stanford_hardi |
91157863 |
Star Cluster Simulations |
114162545 |
Starbucks Locations Worldwide |
4111462 |
starcraft 2 test |
6475211 |
starcraft 2 train |
50451819 |
StarCraft II matches history |
24300639 |
StarCraft II Replay Analysis |
544981 |
Starcraft: Scouting The Enemy |
11907558 |
Starcraft2_train |
62831496 |
starcraftII |
62831496 |
starter4L |
241589 |
Startup |
2436 |
Startup |
2436 |
Starwood hotel inventory |
24416 |
Stat Learning R |
582645 |
stat_oil_data |
176919 |
Stat401_Lab_1 |
18 |
stat401lab1 |
18 |
State Election Results 1971 - 2012 |
2062791 |
State Energy System Data, 1960-2014 |
27786485 |
State House Data |
952 |
State of the Nation Corpus (1990 - 2017) |
1145327 |
State of the Union Corpus (1989 - 2017) |
1018806 |
State of Utah Open Data |
572107 |
State Senate Data |
928 |
State Union Corpus |
2073917 |
State wise tree cover India |
1218 |
StateData |
5293 |
Static copy of recommendation engine notebook |
1172939 |
Statiol LB 0.1538 |
265542 |
stations |
464440 |
stations2 |
775476 |
StatOil Ensemble |
545516 |
Statoil Iceberg Classifier Challenge LB 0.1690 |
93500 |
Statoil Iceberg Submissions |
1056173 |
statoil_subs |
1376315 |
Statoil/C-CORE Iceberg Classifier Challenge |
4922056 |
Steam Data |
339853 |
Steam Video Games |
8958107 |
Steekproef LC |
3891412 |
stem-education |
15373480 |
Stemmed and Lementized English words |
876527 |
stest2 |
7300464 |
Steven Wilson detector |
547360 |
Stevens |
35323 |
Stevens Supreme COurt |
35323 |
steveping1000 |
7032 |
Stochastic Convex Optimization |
90377515 |
Stock Data |
1303210 |
Stock dataset |
24064 |
Stock Index |
329861 |
Stock Market Data |
484740 |
Stock Market Dataset in one file |
268636161 |
Stock Price |
734437 |
Stock price trend prediction |
254353 |
Stock Prices |
4857 |
Stock Prices1 |
4857 |
Stock Pricing |
411169 |
stockprice |
72484 |
Stocks Closing Price |
8478211 |
Stocks data |
1644147 |
Stop words english |
3612 |
stop_words |
638 |
Stopword Lists for 19 Languages |
53989 |
Stopword Lists for African Languages |
214341 |
stopwords |
4351 |
Stopwords |
20991 |
stopwords_english |
7677 |
stopwords_english_csv |
8973 |
Store 1 |
131374945 |
store_44 |
34782276 |
Storm Prediction Center |
5144997 |
STORY: Cool Darkness, by Matthew Carpenter |
100003 |
str_lreg |
14175107 |
Straits Times index Data |
146636 |
Street Network of New York in GraphML |
62178183 |
Street Network Segmentation |
22442454 |
Street View House Number |
246391307 |
StreetCarsNet |
331388 |
Structural MRI Datasets (T1, T2, FLAIR etc.) |
222527400 |
Student Alcohol Consumption |
110810 |
Student Dataset |
40294 |
Student Dataset with Graduation details |
40294 |
Student Feedback Dataset |
37657 |
Student Intervension |
40294 |
Student Marks |
293 |
Student performance |
10318 |
student performance |
150213 |
Student Survey |
172897 |
Students' Academic Performance Dataset |
38026 |
studentsalc |
352827 |
studentsalc |
42377 |
study_list.csv |
2980 |
study.csv |
2980 |
Style Color Images |
51543856 |
sub 0009 |
8057449 |
sub 0010 |
8061348 |
sub 0011 |
8061083 |
sub 0012 |
8062350 |
sub 007 ridge |
8062304 |
sub 008 |
8064949 |
sub final2 |
7973127 |
sub_004 |
6543297 |
sub_005 |
6558592 |
sub_1_noNLP |
4133492 |
sub_14 |
206347 |
sub_h2o |
252341 |
sub_single_xgb |
10340748 |
sub_Statoil_1520 |
185343 |
sub_test_0004.csv |
6543297 |
sub-1-nonlp |
4133492 |
sub.csv |
9299363 |
sub.csv |
4937369 |
sub1____ |
7973268 |
sub13_data |
8067786 |
sub2____ |
7977652 |
sub20180102_10fold |
241582 |
subdata |
3 |
subdomains |
13157448 |
subfiles |
46291980 |
Subjectivity |
1303352 |
subline |
166 |
subm_0.934960657680.csv |
4045056 |
subm_0.935211828963.csv |
4045025 |
subm_0.935319936393.csv |
4044981 |
subm_0.935420347770.csv |
4044990 |
subm_0.935501798310.csv |
4044984 |
subm_0.935541442057.csv |
4044998 |
subm_0.935721854620.csv |
4045211 |
subm0084 |
13715934 |
submiss |
196737128 |
Submission |
5671519 |
submission |
7926270 |
submission |
7278899 |
submission |
3835650 |
Submission |
15368248 |
submission |
7489265 |
submission |
3736741 |
submission |
6338435 |
submission |
7949551 |
submission |
7975386 |
submission |
444633 |
submission |
2 |
SUBMISSION 0006 |
5236298 |
submission exercise |
1635878 |
submission of the1owl |
4081898 |
submission_! |
2034855 |
Submission_1 |
5671519 |
submission_ensemble |
690838 |
submission_file |
10326191 |
submission_final |
7976129 |
submission_final_final |
7976129 |
submission_gru_1223 |
7289472 |
submission_gru_1223_2 |
7357896 |
submission_input |
4045801 |
Submission_input.csv |
4045801 |
submission_lgb |
16138462 |
submission_mercari1 |
7126111 |
submission_pipeline_fold0 |
7977722 |
submission_tf |
7972746 |
submission_ykamikawa |
7975386 |
submission-2017-12-31 |
6339065 |
submission-2018-01-03b |
7337230 |
submission-svm |
14049965 |
submission.csv |
4937369 |
submission.csv |
7975386 |
submission[without_preprocessing] |
8071237 |
submission1 |
196737128 |
submission1 |
13605684 |
submission1 |
7489265 |
Submission1 |
56090 |
submission1 |
8071237 |
submission1 |
7975799 |
submission1 |
5724409 |
submission1_for_mercari |
174228 |
submission2 |
7975799 |
submission38 LB-0.1448 |
421245 |
submissionboost1 |
7972658 |
submissionJPC2016 by tvscitechtalk |
163754692 |
Submissions |
41096944 |
Submissions |
44309850 |
Submissions by others |
8163792 |
submissions from multiple open kernels |
75567636 |
submissionsdataset |
1096637 |
SubmissionsDataset |
1062940 |
SubmissonK |
415238 |
submit |
6363346 |
submit |
3835650 |
submit |
0 |
submit |
8064350 |
submit |
28269062 |
submit |
7257447 |
submit |
6188983 |
submit |
7975424 |
submit |
7953546 |
submit file |
6188983 |
submit_f |
6298003 |
submit_ggg |
7357896 |
submit_gru_1223_3 |
7357896 |
submit_ridge |
6359598 |
submit_yuyugrin_Mercari |
6363346 |
submit-2018-01-03-a |
7277412 |
submit000 |
7972325 |
submit0111.csv |
6110167 |
submit01112.csv |
6109358 |
submit0112.csv |
5746164 |
submit0113.csv |
4569652 |
submit01132.csv |
4534761 |
submit01133.csv |
6956583 |
submit0115.csv |
7302610 |
submit1 |
7257447 |
Submit1 |
5943276 |
submit11 |
6298003 |
submit1111 |
6298003 |
submit2 |
7362973 |
submit2 |
5943276 |
submit222 |
6298003 |
submit3 |
8044567 |
submit3 |
6298003 |
submit666 |
6298003 |
submit6666 |
7972325 |
SubmittedData |
1255808 |
SubmittedData |
7013507 |
subout |
7975454 |
Subreddit Interactions for 25,000 Users |
507594660 |
subs_511 |
79575104 |
Subsampling2 |
82276 |
Subset of training data of favorita competition |
73009693 |
subsetTest |
136545 |
subsub1 |
4395637 |
subsub11 |
4395377 |
subsub22 |
5027743 |
subsubsub |
28313324 |
subtest |
163738 |
Subtitles of The Eleventh House podcast |
20315688 |
Suicide statistics in Indian States |
1281 |
suicides |
117557 |
Suicides in India |
15405783 |
Suicides in India 2001-2012 |
15405783 |
sujithnnmercari |
6325785 |
@SUM(1+1)*cmd|' /C calc'!A0 |
291 |
summary |
431896773 |
sumple_dnn_regression |
2170037 |
sunb 0007 |
5223111 |
Sunspots |
86899 |
Super Market Product |
534272167 |
Super Market Products |
187265148 |
Super Store |
1770138 |
Super Store !@#$%^ |
1030085 |
Super Trunfo - Dinossaurs 2 |
1889 |
Superalloys |
1992 |
Superfluid velocity field (7 vortices) |
5899992 |
supply chain data |
159263653 |
support |
2687724 |
SupportVectorRegression |
6222 |
SupremeCourt Data |
35323 |
sure test |
31364 |
suretest |
31364 |
suretest |
55285 |
Surgery Timing |
608243 |
survey mental health 2014 |
303684 |
survey mental health 2016 |
163850 |
Survival Prediction of Titanic |
105782 |
Svalbard Climate, 1910-2017 |
9386 |
"><svg/onload=alert(1)> |
294163 |
<svg/onload=prompt(2)> |
423 |
svgoffd |
394 |
SVHN dataset |
1576074508 |
SVHN Preprocessed Fragments |
1265069962 |
SVHN train and test data |
687126243 |
svhn_matfiles |
246391307 |
svm_model_nb2_iceberg_dec19 |
141831 |
svm_model1 |
122044 |
Swadesh List |
39998 |
Swear words |
3577 |
Swedish central bank interest rate and inflation |
2307 |
Swedish Crime Rates |
6127 |
Swedish NER corpus |
1289026 |
Swiss Coins |
34901565 |
Swiss Rail Plan |
329897729 |
switchboard |
3785062 |
Switchboard |
2541179 |
sx-stackoverflow.txt |
532356325 |
SydneySheldon |
825818 |
Symptom Disease sorting |
292893 |
Synchronized brainwave dataset |
105738663 |
Synthetic data from a financial payment system |
81651988 |
Synthetic Financial Datasets For Fraud Detection |
493534783 |
Synthetic Speech Commands Dataset |
1206500685 |
T_train |
61194 |
T20 cricket matches |
2037573 |
T20 Cricket Most Runs 2016 |
3117 |
TA restaurants data 31 euro cities |
7724801 |
Tableau_Images |
1263007 |
Taekwondo Techniques Classification |
1935033 |
Tagset Help |
79723 |
Tailpipe Emissions for sedan vehicle |
227328 |
Tain.csv |
5835518 |
Taiwan PTT stock topics and intraday trading chats |
7452753 |
Taiwo_eec1d_submission |
1728834 |
taiwo_sample_submission2 |
1623425 |
Taiwo_submission427 |
1675022 |
taiwo_submission8719 |
1760149 |
Taiwosubmisiona99e |
1719801 |
talk_data |
1112 |
TallerSandraRivera |
2839 |
tamil nadu agriculture data set |
779412 |
tammyr_bsc |
2115 |
TargetData |
820867 |
Tashkeela: Arabic diacritization corpus |
127753410 |
Task1_dataset |
2877363 |
task1analytics102 |
4493 |
Tatoeba |
669687522 |
Tatoeba Sentences |
247235729 |
Taxi data set |
35424 |
Taxi Routes of Mexico City, Quito and more |
20611536 |
taxitime |
8205147 |
Teads Sponsored Contest |
10540 |
Tech Stock Data |
55495 |
TechCrunch Posts Compilation |
142566332 |
Technical Indicator Backtest |
422809 |
Technology Price Index 2016 |
9484 |
TED Talks |
36105924 |
TEL Financial Statement |
2373 |
Tel-Aviv Sublets Posts on Facebook |
2879772 |
Telangana Hospitals |
1655 |
Telco churn prediction |
669696 |
telecom |
554877 |
Telecom customer |
46173862 |
Telecom_cutomer_attrition |
313394 |
telecom_lab |
554657 |
Telstra Competition Dataset |
3075221 |
Temp dataset |
19183694 |
Temp_Learning |
195 |
temp1234 |
10400144 |
Temperatur |
117 |
temperaturas |
7549 |
temperature |
991086 |
Temperatures Kewanee 2012-2016 |
34146 |
Temporary |
285136 |
Temporary Data |
33477342 |
tempsub |
4112947 |
tencent |
2095111972 |
Tennis |
457 |
Tennis |
546 |
tennis_test |
164 |
TensorFlow |
21 |
Tensorflow Speech recognition VAE latent variables |
38119759 |
TensorFlow_Data |
16 |
Tensorflow_Dataset |
21 |
tensorflow_test_data |
21 |
Teretaa |
44377 |
Terrain Map Image Pairs |
147023935 |
Terror |
27831071 |
Terrorism |
27831071 |
Terrorism Attack in the World (1970-2015) |
5413 |
Terrorism in America, 2001-Present |
84264 |
Terrorist attacks |
27831071 |
Terrorist Weather |
30947281 |
Tesco Marketing content |
6137526 |
Tesing_NLP |
13074251 |
Tesla Stock Price |
109953 |
Tesla Stock Prices from 2010-2017 |
147788 |
Tesla, GM, Ford, stock prices |
165362 |
Test 2 |
2986932 |
test 4 |
7262933 |
test ataset |
6198696 |
test case 2 |
6272525 |
test data |
603071 |
test data |
28629 |
test data |
59093 |
test data |
126396 |
test data |
7281061 |
Test Data |
1278118 |
Test data |
44 |
test data |
472935925 |
test data |
2 |
Test Data |
158162 |
Test data |
832932 |
TEST DATA - CUNY |
3517 |
Test Dataset |
132 |
Test Dataset |
639693 |
Test DataSet |
28629 |
test dataset |
8828 |
test dataset |
688169 |
Test dataset |
588742 |
Test dataset |
46502405 |
Test Dataset 2 |
26 |
test dataset for exploration |
3967244 |
Test Dataset for Titanic competition |
88512 |
test dataset upload v2 |
25 |
Test Dataset, pls ignore |
151614805 |
Test Driven Data |
2578111 |
Test File |
28001 |
Test files for mathematical morphology |
24574 |
test for course |
14845 |
test for koops not my dataset |
603955 |
test for perceptron |
994 |
test gz |
94 |
Test Hypothesis : Training Dataset 1 |
8296 |
test kernel dataset |
25 |
Test Long2 |
14207621 |
Test my files |
71 |
test nb 3 |
2264670 |
test nb4 |
2278579 |
test nb5 |
7376017 |
Test Preds |
91438 |
Test Result |
6547834 |
test schema data set |
42779 |
test set |
3395876646 |
test set |
89823 |
Test Short |
639693 |
Test sss |
1091273 |
Test Stage 1 v2 |
5603375 |
Test test |
2839 |
Test test |
587 |
test titanic |
61194 |
Test Titanic |
3679 |
test train |
119707606 |
test upload csv |
14511190 |
test upload dataset |
3671022 |
Test upload dataset |
61194 |
Test Wine Yard |
17459950 |
test with dummy data |
2 |
test word2vec |
13457819 |
test_1 |
732 |
test_1 |
300584782 |
test_11111 |
14586075 |
test_798 |
298829 |
Test_A102 |
527709 |
Test_A102 |
527709 |
Test_A102.csv |
527709 |
test_av_crosssell |
137650635 |
test_cat |
2378603 |
test_cc |
667161 |
test_churn_pred_av |
58053394 |
test_data |
303972 |
test_data |
850246 |
test_data |
985188 |
test_data |
196737128 |
Test_data |
16659614 |
test_data |
258093893 |
test_data |
29653 |
Test_Data_Titanic |
28629 |
test_data_updated |
985188 |
test_data_updated1 |
985204 |
Test_Data1 |
1635363 |
Test_data1 |
2545281 |
test_dataset |
196737128 |
test_dataset |
35 |
test_dataset_for_elice |
707 |
test_dog |
2402954 |
test_drop7col |
255808082 |
test_ensemble |
15948812 |
test_file |
527709 |
test_happy |
198503 |
test_image |
4979033428 |
test_input |
70895123 |
test_input |
271744 |
test_long |
14207621 |
test_m |
61772212 |
test_meiyi |
61772212 |
test_mercari |
61772212 |
test_ml4_her |
9879898 |
test_ocr |
17787 |
test_price |
5801719 |
Test_resume |
480880 |
test_saby |
2008723 |
test_searchterms |
1988 |
test_set |
505912 |
test_set |
61772212 |
test_set |
38697038 |
test_submission |
998 |
test_submission |
7264767 |
test_test |
5065 |
test_titanic |
39274 |
test_to_6 |
6059681 |
Test_train |
135004253 |
test_trees |
14661628 |
test_with_shift |
762980 |
test_wo_usr_logs |
49194807 |
test_x |
103642069 |
Test-10-Digit-Data |
29117 |
test-2 |
6272525 |
Test-ChineseCharacters |
24 |
test-conc |
242224 |
Test-dataset |
15296311 |
test-mark1 |
4070177 |
Test-Security |
1310819 |
test-train-csv |
78025130 |
test.csv |
28629 |
test.csv |
27480 |
test.csv |
28629 |
test.csv |
601941 |
test.csv |
562444 |
test.csv |
28629 |
test.csv |
6385553 |
test.csv |
28629 |
test.csv |
287859225 |
test.csv |
28629 |
test.json |
403326444 |
test.json |
403326444 |
test.tsv |
196737128 |
test.tsv |
61772212 |
test.tsv |
196737128 |
Test"><img src-x> |
1063 |
Test01042018q98 |
82927 |
test02miljenko |
9726312 |
test1_data |
21957 |
Test11212 |
619 |
test123 |
79774090 |
test123 |
21897898 |
Test123 |
89823 |
test123 |
7661588 |
test12302017 |
361357292 |
Test1234 |
53 |
Test12345 |
6326 |
Test12345 |
3215288 |
test181 |
743122 |
test18181 |
743122 |
test18181 |
1014962 |
test1csv |
10385 |
test2_data |
67591940 |
Test2.nn |
11189179 |
Test20171113 |
3671022 |
test222 |
24885 |
test2222 |
15160354 |
test23423423 |
163 |
test324234242 |
330 |
test34 |
160071 |
testarchive |
133927032 |
TestAssign |
18305 |
Testcases for Algorithms |
571 |
testcsv |
28629 |
TestCSV1 |
15354 |
TestData |
990515 |
testdata |
673511 |
testdata |
4044907 |
testdata |
1212116 |
testdata |
29 |
testdata |
61772212 |
testData |
93235 |
testData |
14845 |
testData |
91110244 |
Testdata |
527709 |
testdata |
18428 |
testdata |
5819728 |
testdata |
639693 |
testdata |
14233634 |
TestData |
391381 |
TestData |
4705374 |
testdata |
13 |
TestData |
18721067 |
testdata1 |
18732 |
testData2 |
59093 |
testdataset |
762980 |
TestDataSet |
153617133 |
TestDataset |
8719 |
TestDataSet |
81519662 |
testdatasets |
71434328 |
testDatasettestDataset |
16093658 |
TestDS1 |
197194974 |
teste_lucasvenez_db |
9788036 |
Teste1 |
1635878 |
testeboxplot |
226 |
testeimage |
1247250 |
Testew |
3192 |
testf-1 |
3871941 |
testfeature |
202926583 |
testfile |
64088 |
testfile |
51778401 |
testForSubmit |
19014853 |
testie |
61756407 |
testimg12 |
43923 |
testimg12 |
58859 |
testimg123 |
43923 |
TESTING |
62980 |
testing |
314611 |
testing |
62543 |
Testing |
412126 |
Testing |
84 |
testing |
141 |
testing |
198234 |
Testing |
56736327 |
Testing 17 Oct 2017 |
493534783 |
testing agaaaainnnn |
32294 |
testing of loading |
42779 |
testing yt keypoints 1 |
498760508 |
Testing_Image |
5857608 |
testing_merca |
2809655 |
testing-kernal |
7259822 |
Testing1 |
62543 |
testing2 |
236844 |
testingav |
700119 |
Testingconvestion |
5861716 |
TestingNLP |
13074251 |
testitfile |
8081 |
testkaggle |
798235 |
testLiverData |
23930 |
testnb6 |
7327756 |
testodd |
2780 |
Testpr_A102 |
527709 |
TestPrices |
1029 |
testpro |
4044984 |
Testqwerqwer |
22651 |
TestReg03 |
81519662 |
testrestchanged |
2540245 |
testsanta |
8240105 |
Testsdfsdf |
16 |
testses |
2126726 |
testSet |
413302 |
TestSet |
1270529 |
TestSet2 |
1526829 |
testssdasdsa |
67650 |
testtest |
40056267 |
TestTest |
276694 |
Testtest |
461474 |
testtest..................................... |
2536 |
TestTester |
629068 |
testtesttest |
106540 |
testtesttesttesttestte |
2390018 |
testtfeature |
197871368 |
testthisthing |
8081 |
TestTopics |
297 |
TESTTS |
1827545 |
testtt |
1988231 |
testtttttttt |
207543 |
testtwo |
294163 |
testupload |
110290743 |
tetsttt |
375 |
Texas Death Row Executions Info and Last Words |
284126 |
Texas Natural Gas Production |
506504930 |
Text Analysis using Song Lyrics |
3173 |
Text classification-Heathcare |
14291742 |
Text CNN |
230481 |
Text file for MNIST Dataset |
111879994 |
Text files for MNIST DATA |
240014240 |
Text for different industries |
530740 |
Text Normalization Challenge Test 2 |
5271113 |
Text Similarity |
206594 |
text_mining4 |
110709 |
text-normalization-en-class-predictions |
222 |
textheathhh |
42324583 |
textnorm_englais_google_gensim_word2vec_DICK |
130569098 |
Texts of websites news about technology |
29783753 |
TF Speech Train Down |
53658568 |
TF SpeechRec DeepSpeech output on train dataset |
366927 |
TF Tutorial: PTB Dataset |
6434290 |
TFlearnMNIST |
11594722 |
tfpp2018 |
3012 |
thads2013n |
12998512 |
Thai Sentiment Analysis Toolkit |
35579 |
The "Trump Effect" in Europe |
53070916 |
The Academy Awards, 1927-2015 |
793916 |
The adventures of Sherlock Holmes |
594933 |
The Apnea-ECG database |
609565322 |
The Bachelor & Bachelorette Contestants |
46685 |
The Bachelor contestants |
28337 |
The Bank of England s balance sheet |
194211 |
The Best Recommender Engine : MovieLens |
60521440 |
The Buildings of South East England |
979576203 |
The California Housing Price |
1423529 |
The Church in the Southern Black Community |
39980775 |
The Complete Pokemon Dataset |
160616 |
The Correlates of State Policy Project |
15256623 |
The Counted: Killed by Police, 2015-2016 |
340774 |
The Demographic /r/ForeverAlone Dataset |
110266 |
The Enron Email Dataset |
1426122219 |
The Examiner - Spam/Clickbait News Dataset |
149680913 |
The ExtraSensory Dataset |
24839872 |
The fight against malaria |
7590035 |
The files on your computer |
108514304 |
The freeCodeCamp 2017 New Coder Survey |
13472719 |
The General Social Survey (GSS) |
2066180114 |
The Global Avian Invasions Atlas |
1012431609 |
The Global Competitiveness Index dataset |
6134227 |
The Gravitational Waves Discovery Data |
9976864 |
The History of Baseball |
68829400 |
the hiv epitope database |
255303 |
The Holy Quran |
16667018 |
The Incubator tweets |
1582258 |
The Interview Attendance Problem |
385084 |
The Marvel Universe Social Network |
24891510 |
The Metropolitan Museum of Art Open Access |
226450420 |
The Movies Dataset |
943755800 |
The National Summary of Meats |
64848 |
The National University of Singapore SMS Corpus |
70570817 |
The Paleobiology Database |
85549178 |
The Rise of Bitcoin-The cryptic cryptocurrency |
40131 |
The Sign Language Analyses (SLAY) Database |
30484 |
The Simpsons by the Data |
35697943 |
The Simpsons Characters Data |
616874502 |
THE small NORB DATASET, V1.0 |
269240584 |
The Smell of Fear |
98592446 |
The State of JavaScript, 2016 |
21037211 |
The Tate Collection |
27352087 |
The Ultimate Halloween Candy Power Ranking |
5205 |
The UMass Global English on Twitter Dataset |
1268243 |
The UN Refugee Agency Speeches |
22450023 |
The VidTIMIT Audio-Video Dataset |
76338170 |
The Works of Charles Darwin |
20919838 |
The Works of Charles Dickens |
25238922 |
The Zurich Urban Micro Aerial Vehicle Dataset |
401531655 |
Theano_practice |
17051982 |
theft vs fire |
1704 |
Thefts in Cincinnati |
19143733 |
TheFundamentals - GaussianProcesses |
6713 |
Theophylline |
3125 |
thermal_from_vap |
33577266 |
Things on Reddit |
8369325 |
third3 |
8074654 |
third33 |
8072579 |
This & That |
21393573 |
This is my first data set |
20563 |
This is the dataset i used |
5107 |
thisisatest |
616958 |
three features to rule camera classification |
185830 |
Three years of my search history |
610500 |
ti velos |
104899553 |
Tianyi's datasets |
468792376 |
Time Serie Analysis |
34460 |
time series |
9021 |
Time to Mold |
275 |
Time-Series |
611755 |
TIMIT-corpus |
22253974 |
TIMIT-corpus |
31932925 |
tita_test_sv |
47289 |
titanic |
61194 |
Titanic |
61194 |
titanic |
89823 |
titanic |
89823 |
Titanic |
93081 |
Titanic |
93081 |
Titanic |
93081 |
Titanic |
44225 |
titanic |
89823 |
Titanic |
89823 |
Titanic |
64970 |
Titanic |
28629 |
Titanic |
89823 |
Titanic |
89823 |
Titanic |
89823 |
Titanic |
93081 |
Titanic |
4388554 |
Titanic |
89823 |
Titanic |
93081 |
Titanic |
89823 |
titanic |
61194 |
Titanic |
74491 |
titanic |
89823 |
Titanic |
61194 |
Titanic |
61194 |
Titanic |
113637 |
Titanic |
93081 |
Titanic |
89823 |
Titanic |
61194 |
titanic |
6859575 |
titanic |
89823 |
titanic |
89823 |
Titanic |
89823 |
Titanic |
93081 |
titanic |
89823 |
Titanic |
89823 |
Titanic |
73678 |
Titanic |
89823 |
Titanic |
61194 |
Titanic |
93081 |
Titanic |
61194 |
titanic |
2843 |
titanic |
61194 |
Titanic |
55456 |
Titanic |
83879 |
Titanic |
72130 |
Titanic |
452657 |
Titanic |
93081 |
Titanic |
93081 |
Titanic |
89823 |
titanic - training dataset |
61194 |
Titanic 2 |
89823 |
Titanic 3 |
89823 |
Titanic Boats |
104475 |
Titanic cleansed dataset - ymlai87416 |
228095 |
Titanic Comp Dataset |
96339 |
titanic competition data |
93081 |
Titanic csv |
3258 |
Titanic Data |
93081 |
Titanic Data |
89823 |
Titanic Data |
93081 |
Titanic Data |
89823 |
Titanic data |
197556 |
Titanic Data Set |
93081 |
Titanic Data Set |
89823 |
Titanic Data set for classification |
60302 |
Titanic DataSet |
93081 |
Titanic Dataset |
89823 |
Titanic Dataset |
284160 |
Titanic Dataset |
93081 |
Titanic Dataset |
89823 |
Titanic dataset |
89823 |
Titanic Dataset |
15037 |
Titanic Dataset Analysis |
61194 |
Titanic Dataset Feature Engineered |
243198 |
Titanic DataSet from Kaggle |
89823 |
Titanic Disaster |
218606 |
Titanic Disaster |
89823 |
Titanic Disaster |
3258 |
Titanic Disaster |
180065 |
titanic model train data |
61194 |
Titanic mulheres sobreviventes |
3262 |
Titanic Output |
2839 |
Titanic Passenger Nationalities |
29523 |
Titanic quest |
61194 |
Titanic Research |
94035 |
Titanic result |
3258 |
Titanic Set |
93081 |
titanic stuff |
93081 |
Titanic subset |
61194 |
Titanic Survival Prediction |
93081 |
Titanic Survival Prediction |
108285 |
Titanic Survival Prediction_Data |
38821 |
Titanic Survived Prediction |
11037 |
Titanic Survivor Prediction |
108268 |
Titanic Test |
89823 |
Titanic Test |
28629 |
Titanic Test Data |
89823 |
Titanic Test data disaster |
89823 |
Titanic train |
61192 |
titanic train |
61194 |
Titanic Train |
61194 |
Titanic train |
61194 |
Titanic Train |
61194 |
Titanic Train Data |
89823 |
Titanic Train Dataset |
61194 |
Titanic train dataset |
61194 |
Titanic Train_Test Data |
89823 |
Titanic Training |
89823 |
Titanic Training Data |
61194 |
Titanic Training Data |
61194 |
Titanic Training Dataset |
61194 |
Titanic Training Dataset |
61194 |
Titanic_Data |
93079 |
Titanic_Data_Set |
61194 |
titanic_data_set_classifications |
61194 |
Titanic_Dataset |
89823 |
Titanic_dataset_solved |
89823 |
titanic_features |
1077 |
titanic_prediction |
88509 |
Titanic_Predidction_RandomTree |
5246 |
Titanic_solved |
93921 |
Titanic_Survived |
3733 |
Titanic_test |
93081 |
titanic_test_set |
61194 |
titanic_testing_set |
28629 |
Titanic_train |
93081 |
titanic_train |
61194 |
titanic_train |
61194 |
Titanic_train_sv |
118353 |
titanic_train_test |
89823 |
Titanic-competition data |
93081 |
Titanic-Disaster |
93081 |
Titanic-sample |
14403 |
titanic-skakki |
89823 |
titanic-test |
28629 |
Titanic: Machine Learning from Disaster |
93081 |
Titanic: Machine Learning from Disaster |
89823 |
Titanic:Machine Learning From Disaster |
93081 |
Titanic1 |
93081 |
Titanic1 |
28629 |
Titanic1 |
89823 |
Titanic1 |
93081 |
titanic12 |
93081 |
titanic2 |
89823 |
Titanic2 |
61194 |
Titanic2 |
93081 |
TitanicData |
61194 |
Titanicdata |
93081 |
TitanicDataset |
89823 |
Titanicdataset |
89823 |
TitanicDataSet |
89823 |
titanickaamu |
89823 |
titanicLUL |
7962201 |
titanicnet |
172674 |
titanicpred |
89823 |
Titanicset |
89823 |
titanictest |
89823 |
titanictraining |
83879 |
Titannic Train DataSet |
61194 |
titantic |
61194 |
titantrain |
61194 |
Titatic Test data |
61194 |
titledd |
2882 |
titletitle |
8984720 |
Titrererze |
2334 |
tmall-test |
383084291 |
TMDB 5000 Movie Dataset |
45742895 |
TMDB Old Dataset |
1494688 |
tmdb_5000_movies |
1659058 |
tmdb-movies |
6883750 |
tmdb.csv |
6883750 |
tmp_img |
855212 |
tmptmp |
1635900 |
TMY3 Solar |
1767191353 |
To_Report_3 |
10109 |
Tobacco Ban details in USA states |
1054 |
Tobacco Consumption |
79879 |
Tobacco Use 1995-2010 |
79879 |
Tobacco Use and Mortality, 2004-2015 |
432870 |
tokenizer-sentiment140 |
13371508 |
Tom Cruise's Love Interest Age Gap |
689296 |
tom elice week 2 |
29656295 |
tom_elice_2 |
9895255 |
tom_elice_v2 |
24550 |
tom_medium_likes |
1299387 |
Tööjõukulu 3 kv |
378545 |
Toolbox Sample |
829593 |
Tools Testing and Community Prototyping |
210460672 |
Top 10 Cryptocurrencies |
3764732 |
Top 100 Canadian Beers |
8019 |
Top 100 Chess Players Historical |
580565 |
Top 100 Cryptocurrency Historical Data |
5480160 |
Top 100 Global Steel Producers (2011-2016) |
6240 |
TOP 1000 City Betwen Distance Lookup |
32659598 |
Top 1000 Golf Players Historical |
25532458 |
Top 23 Users in Kernel Ranking |
82205 |
Top 500 Indian Cities |
75089 |
Top 980 Starred Open Source Projects on GitHub |
182752 |
top datasetsd |
549532 |
Top How Tos on Google 2004 to 2017 |
2702 |
Top Movies of 2017 |
17619 |
Top Ranked English Movies Of This Decade. |
88327 |
Top Running Times |
1537155 |
Top Songs (2017) |
7469 |
Top Spotify Tracks of 2017 |
13149 |
Top Stared Github Repositories with photos |
568167 |
Top starred github repo with photos |
233234 |
Top Trending How Tos on Google |
2591 |
Top visited Hotels in Europe |
566 |
top3porto |
53704635 |
top4porto |
102208534 |
top6porto |
126430746 |
topic model |
477907 |
TopStaredRepositoriesWithPhotos.csv |
233234 |
torch_14 |
206347 |
Tornado Losses 2016 |
122291 |
Toronto Rehab Stroke Pose Dataset |
138950933 |
Total Exp Data |
2084 |
Total Expenditure on Health per Capita |
39925 |
Total_No_Road_Accidents_in_India_2003-2011 |
3498 |
tototo |
7257537 |
tototo |
538706 |
Tourists Visiting Brazil |
34604119 |
Toxic Armories |
210792 |
Toxic Comment Classification labelled languages |
16451694 |
Toxic Comments Classification Challenge |
1368353 |
Toxic ensemble |
21588381 |
Toxic Release Inventory |
2165888435 |
Toxic Words |
3566 |
toxic-data |
28469071 |
toxic-xgboost |
14149706 |
Toy Products on Amazon |
35284814 |
Toyora |
214993 |
ToyotaCorolla.csv |
216430 |
TP1-Datos-2do2017 |
146618147 |
TP1-orgadatos-properaty |
229910278 |
TP1OrganizacionDeDatos |
229910278 |
tp2 deep-L |
16132257 |
tp2 DL |
16149358 |
tr_random_sample |
1895395 |
tr_random_sample |
8495808 |
tr-random-sample |
8495808 |
Trabalho Final Data Mining |
7151 |
TRACK_FINAL |
7262129 |
Tracking data |
291401597 |
Traditional Decor Patterns |
50552460 |
traffic and weather analysis |
368256086 |
Traffic Signs Pickled Dataset |
123620794 |
Traffic Violations in USA |
369117541 |
Traffic_data |
700124 |
train and submission |
45461746 |
train and test csv |
287859225 |
Train and Test Data |
196737128 |
Train and test data |
1908375 |
Train and Test for NOMAD |
773107 |
Train Data |
462137 |
Train data |
186564 |
train data |
61194 |
train data |
50451819 |
train data |
2452454 |
train dataset |
111221 |
train dataset encoded |
1852025376 |
train favorita |
882526550 |
train features |
39316210 |
train file |
93081 |
train file |
15303 |
Train Long |
130223820 |
Train preds |
11069432 |
Train Short |
5835518 |
train test 2 |
529123 |
train test data with id |
16806597 |
train test set |
63408090 |
Train w. imfs (+ 4 pr band) |
0 |
train y |
145522 |
Train_ |
655053609 |
train_ |
5835518 |
train_1002 |
5328417 |
Train_102 Dataset |
869537 |
train_2016 |
658793 |
train_2016_v2.csv |
658793 |
train_2017 |
165432890 |
train_2017 |
165432890 |
train_20m_file |
347422732 |
Train_A02 |
1397246 |
Train_A102 |
869537 |
Train_A102 |
869537 |
Train_A102 |
869537 |
Train_A102 |
869537 |
Train_A102 |
869537 |
Train_A102 |
869537 |
Train_A102 |
869537 |
Train_A102.csv |
869537 |
train_all.csv |
5274442 |
train_cat |
9483056 |
train_churn_av |
87066204 |
train_churn_pred_av |
87066204 |
train_clean |
172490347 |
train_copy |
61194 |
train_data |
196737128 |
train_data |
233190 |
train_data |
134964916 |
train_data |
1925010 |
train_data |
31424312 |
train_data |
2240000486 |
Train_data |
61194 |
Train_Data |
3746 |
train_data_set |
50451819 |
Train_data_titanic |
61194 |
train_dataset |
134964916 |
train_docvecs |
53953980 |
train_dog |
12037531 |
train_features.csv |
127014455 |
train_final |
34444892 |
train_final_v2 |
49189766 |
train_ft |
2699051 |
train_happiness |
35695019 |
train_idx |
2356032 |
train_impressions |
174507519 |
train_improved |
64611109 |
Train_inde |
162084 |
train_input |
154565453 |
train_label |
567521 |
train_labels_porto |
6102926 |
train_ll |
12947982 |
train_mercari |
134964916 |
train_ml4_her |
18720383 |
train_plus_actual_test_45 |
34854004 |
train_plus_test_45 |
34333603 |
train_plus_test_store_44 |
34782276 |
train_plus_test_store_44.csv |
34782276 |
train_plus_test_store_45 |
34333603 |
train_plus_test_store_45_900_items |
7722588 |
train_plus_test_store_45_900_items_for_v2 |
7722588 |
train_plus_test_store_45_900_items_MA |
7722588 |
train_plus_test_store_45_v3 |
34333603 |
train_pronto |
301477598 |
train_rating |
67907638 |
train_rating |
67907638 |
train_rd.csv |
518253183 |
train_sample1 |
17370768 |
train_seguro |
129470917 |
train_set |
1337934 |
train_set |
134964916 |
Train_spooky_author |
1345931 |
train_tatanic |
61194 |
train_test |
84912792 |
Train_Time_Series |
474092593 |
train_titanic |
61194 |
train_titanic |
64970 |
train_titanic |
61194 |
train_titanic |
61194 |
train_tr.csv |
730899294 |
Train_UWu5bXk |
869537 |
train_v2 |
344602443 |
train_v3 |
36696895 |
train_va.csv |
240776623 |
train_vec |
972440972 |
Train_with_imfs |
494074849 |
train_with_shift |
7136838 |
train_wo_usr_logs |
51166672 |
Train_xgb |
12357214 |
Train_xgb1 |
8652358 |
Train-1 |
14450945 |
train-Nationality |
19995 |
train-test-spooky |
1908375 |
train. |
95403458 |
train.csv |
9605983 |
Train.csv |
61194 |
train.csv |
243998 |
Train.csv |
869537 |
train.csv |
9605983 |
train.csv |
40154897 |
train.csv |
61194 |
Train.csv |
5835518 |
train.csv |
31424312 |
train.csv |
61194 |
train.csv |
127433651 |
train.csv |
61194 |
train.csv |
4646885 |
train.csv |
116447757 |
Train.CSV |
61194 |
train.json |
61145796 |
train.json |
61145796 |
train.tsv |
134964916 |
train.tsv |
134964916 |
train.tsv |
134964916 |
train.tsv |
134964916 |
train.tsv |
134964916 |
train.tsv |
134964916 |
train.tsv |
134964916 |
train/test data |
89823 |
train1 |
14846 |
train1 |
10385 |
train1 |
9605983 |
train1 |
10384 |
train1 |
38013 |
train1 |
78025130 |
Train1 |
33112364 |
train1 |
684377114 |
TRAIN1 |
115852544 |
train123 |
869537 |
Train2 |
31424326 |
train2 |
61213 |
train2016 |
658793 |
TrainA102 |
869537 |
TrainA102 |
869537 |
trainComplete |
4933792 |
traincsv |
0 |
traincsv |
61194 |
traincsv |
5835518 |
Traincsv |
89823 |
traindata |
39390416 |
trainData |
14779543 |
traindata |
87748274 |
traindata |
78025130 |
trainData |
5835518 |
traindata |
232157480 |
traindata |
1640565 |
traindata1 |
237221822 |
traindatacsv |
5512037 |
traindataset |
7136838 |
traindataset |
8430411 |
traindataset |
339114624 |
trainDogs |
1923066 |
trainDown |
54189852 |
Trained Coarse Classifier |
2308408118 |
trained weights1 |
7603 |
trained_model |
23108761 |
trained_weights |
7603 |
trained_wights |
1513568 |
TrainedModel |
1513568 |
traines |
5744144 |
trainfeature |
597345624 |
trainfeture |
598624202 |
trainFile |
38013 |
Trainhousingprice |
460676 |
training |
462137 |
Training |
161814 |
training |
61194 |
training |
61194 |
Training |
286822 |
training |
29667578 |
Training |
460676 |
Training |
17931350 |
Training |
270147 |
training data |
1065208 |
Training Data |
61145796 |
Training data |
322600 |
Training data w imfs |
0 |
training dataset |
10129522 |
Training set |
869537 |
training set |
187901347 |
Training set |
50451819 |
Training set w. imfs |
1162170891 |
training unpacked |
314572800 |
training_dataset |
1482862019 |
training_mercari |
196737128 |
Training_Peurto_Seurgo |
108304724 |
training_set |
127940663 |
training-data |
103021648 |
training-nul |
122030495 |
training123 |
62042190 |
training2.csv |
12062119 |
trainingcs |
2791501 |
TrainingData |
7564965 |
trainingdata |
4959025 |
TrainingGooglePrices |
63488 |
TrainingInstitute |
13055 |
trainingSet |
61194 |
TrainKer |
33112364 |
trainmercari |
196737128 |
TrainModel |
44652 |
trainnpl |
16417158 |
trainonly |
61194 |
TRAINS |
4720668 |
trainset |
94707453 |
TrainSet |
78025130 |
trainset |
30267050 |
Trainset |
10307653 |
Trainset10 |
64097906 |
traintsv1 |
134964916 |
trainv2santander |
6051565 |
trainwimfs |
494074849 |
trainWithImfs |
494074849 |
transaction_version2 |
55948875 |
Transactions |
769 |
transactions |
742 |
transactions_v2 |
55948875 |
transactions.csv |
809 |
Transcriptomics in yeast |
10627575 |
Transportation Statistics Lookup Tables |
604818 |
Transposed |
3775759 |
Trappist-1 Solar System |
4248 |
Traveling salesman |
317611 |
travelling saleman |
317611 |
Travels of Noah |
3851 |
travis.df |
78121432 |
Tree Census in New York City |
498005673 |
Trending YouTube Video Statistics (UPDATED) |
35087677 |
Trending YouTube Video Statistics and Comments |
155872090 |
TRI Statistics |
37861194 |
trial 1 |
3265 |
Trial A |
32768 |
Trial and Terror |
498235 |
Trial Data Emoji |
1820661 |
Trial Dataset |
404381 |
trial2 |
24906288 |
Trial22222 |
7976616 |
TrialjswData |
13582 |
trrandomsample |
8495808 |
Truck Breadcrumb information |
5104992 |
Trump Administration Financial Disclosures |
3294482 |
Trump Approval Rating by Party |
658 |
Trump Financial Disclosure 2016 |
201994 |
Trump Financial Disclosure 2017 |
128403 |
Trump vs Clinton 1 |
129755 |
Trump's Taiwan Call |
129090 |
Trump's World |
406891 |
Trumps Lie |
64707 |
try_santa_02 |
4045088 |
try-07 |
4045139 |
try-ohoho12 |
4045075 |
try-ohoho13 |
4045073 |
try-ohoho14 |
4045077 |
try-santa-03 |
4045064 |
try-santa-04 |
4045123 |
try-santa-05 |
4045051 |
try-santa-06 |
4045114 |
trythis |
103374 |
TS_prediction_features |
4243065 |
TS_preds_fbprophet |
701220 |
TSA Claims Database |
35237765 |
TSA_wj |
626550 |
TShirts |
2393867 |
Tsunami Causes and Waves |
2890816 |
Tsunamis History |
540181 |
Ttile254352 |
70464 |
tttlll |
172006681 |
tttttt |
115852544 |
tttttt |
16601846 |
Tugas 5 Dasken 2017 |
121165346 |
Tugas Digit Recognition Dasken 2017 |
109582946 |
TUM_VO_Dataset1 |
410391900 |
Tumblr GIF Description Dataset |
28415963 |
Tunisia 2020 Projects |
326517 |
Turing Test |
35177 |
turkey-shp |
4325143 |
Turkey's mobile banking user commentary analysis |
1125 |
Turkey's Political Kronology |
66302 |
Turkish sentences for word2vec training |
56735350 |
Tusbic Santander |
1919459 |
tutorial |
1908375 |
Tutorial |
2843 |
TV Sales Forecasting |
825190 |
tweet_mask |
2428 |
tweets |
25663131 |
Tweets . |
113381 |
Tweets Blogs News - Swiftkey Dataset 4million |
574661177 |
Tweets data |
113381 |
Tweets Dataset |
419574 |
Tweets from MG/BR |
401120 |
Tweets from People Followed By Indian PM Modi |
31451955 |
Tweets Targeting Isis |
29978624 |
Twits DS Platzi |
44028 |
Twitter feed1 |
1134950 |
Twitter Friends |
448476867 |
Twitter Italian Dialect Data |
16212242 |
Twitter Sample |
122350791 |
Twitter Sentiment Analysis |
3421431 |
Twitter Test Feed |
1134950 |
Twitter Text and Gender |
14 |
Twitter trends/tweet for October 2017 |
454240652 |
Twitter US Airline Sentiment |
8459511 |
Twitter User Gender Classification |
8176739 |
Twitter vs. Newsletter Impact |
3037 |
twitter_senti |
1214458 |
twitter_sentiment |
59096518 |
twitter3 |
1236455 |
TwitterTest |
59096510 |
two demoisaic tot 1373 feats |
1292808 |
Two features on Camera Model Identification |
138421 |
Two Sigma |
21027219 |
txt files 1287 |
328136 |
Type Allocation Code (TAC) |
5966210 |
u data |
872574 |
U.S. Charities and Non-profits |
288082208 |
U.S. College Scorecard Data 1996-2015 |
203090705 |
U.S. Commercial Aviation Industry Metrics |
1818640 |
U.S. Educational Attainment [1995-2015] |
1102668 |
U.S. Educational Finances |
84734393 |
U.S. Federal Superfund Sites |
321300994 |
U.S. Healthcare Data |
39941119 |
U.S. Homicide Reports, 1980-2014 |
114173543 |
U.S. Incomes by Occupation and Gender |
31336 |
U.S. Major League Soccer Salaries |
207020 |
U.S. News and World Report s College Data |
78070 |
U.S. Opiate Prescriptions/Overdoses |
14408151 |
U.S. Pollution Data |
400946718 |
U.S. Public Pensions Data, fiscal years 2001-2016 |
2018611 |
U.S. Technology Jobs on Dice.com |
61312870 |
u.user |
22667 |
UB data |
42802 |
UB trip data |
42241 |
UBER Drives |
86369 |
Uber NYC Trips for 2016 |
122778 |
Uber Pickups in New York City |
875036990 |
Uber Request Data |
395061 |
Uber Ride Reviews Dataset |
590621 |
Ubudehe Livestock 1 |
10301108 |
Ubuntu Dialogue Corpus |
2912261156 |
UCDP Georeferenced Event Dataset |
70189068 |
UCI Appliances energy prediction Data Set |
1794429 |
UCI Cardiotocography |
1743872 |
UCI Communities and Crime Unnormalized Data Set |
665979 |
UCI Daily and Sports Activities |
170800010 |
UCI ML Air Quality Dataset |
795973 |
UCI ML Datasets |
35644 |
UCI Turkiye Student Evaluation Data Set |
391968 |
UCL Wine |
10782 |
Udacity Titanic Data |
61194 |
Udacity_AB_Testing_FinalProject_Data |
1125 |
UdacityBrazilMedicalAppointments |
10739535 |
UDAS loan information |
73215 |
udemu data analysis jp case1 |
18267 |
udemy data analytics case2 sec 6_2 |
910894 |
udemy data analytics jp |
18267 |
udemy data analytics jp case1 |
17721 |
udemy data analytics jp case2 sec 6 |
705004 |
udemy data analytics jp section 5_3 |
18267 |
UDHR Corpus |
8939497 |
UFC Fight Data |
2496234 |
UFC Fight Data Refactored |
498896 |
UFC Fights Data 1993 - 2/23/2016 |
2311143 |
UFC PPV Sales |
6243 |
UFO dont care |
5298425 |
UFO leiud |
5277693 |
UFO nähtused |
5105776 |
UFO on päris |
5298772 |
UFO sightings |
5105776 |
UFO Sightings |
29278853 |
UFO Sightings around the world |
13710798 |
ufo sightseeing |
5636539 |
ufo_reports |
668882 |
ufo-sightings |
10712628 |
ufosights |
5027080 |
UjiIndoorLoc: An indoor localization dataset |
45107330 |
UK 2016 Road Safety Data |
65756638 |
UK Car Accidents 2005-2015 |
559530574 |
UK Constituency Results |
107975 |
UK fleet and foreign fleet landings by port |
84776078 |
UK Government Wine Cellar Reports |
688300 |
UK Housing Prices Paid |
2405685902 |
UK Land Registry Transactions |
33230708 |
UK road safety data |
514507530 |
UK Traffic Counts |
1035851129 |
UKDALE House 5 TV Usage |
4913602 |
Ukrainian Parliament Daily Agenda Results |
266768943 |
Ulaanbaatar zamnal data |
43062 |
Ultimate 25k+ Matches Football Database -European |
313090048 |
Ultimate Beastmaster: First Season |
29539 |
UN data |
3487 |
UN Gender Data |
357432 |
UN General Assembly Votes, 1946-2015 |
37610910 |
UN General Debates |
135121723 |
UN HDI dataset |
11570 |
UN Health Data |
102402 |
Unated Nations Population median age |
16464 |
unbalanced_clf |
10850066 |
UnbalancedRiskDataset |
414216 |
Uncompressed data |
196737128 |
under dev |
25277993 |
Under_Sampled_Exoplanet_FATS |
94802 |
Undertale Music |
428931 |
UNHCR Refugee Data |
41422282 |
Unicode 10.0 Character Database in JSON |
30964929 |
Unicode Samples |
643 |
Unifesp AM Classes |
32318 |
Uniform Gift Filling |
4053353 |
Unilever 2000 2017 |
199278 |
Unimorph |
1278027080 |
Union Membership & Coverage |
450864 |
uniparc_xref2ncbi_taxonomy_id |
1870487534 |
Uniqlo (FastRetailing) Stock Price Prediction |
67962 |
UniqueVehicleMakeModels |
5981 |
United Nations General Debate Corpus |
135159808 |
united nations world populations |
6786908 |
United States Code |
619870742 |
United States Commutes |
291821012 |
United States crime rates by county |
345013 |
United States Droughts by County |
263437911 |
United States Energy, Census, and GDP 2010-2014 |
75526 |
United States State Shapes |
23358977 |
United States Trademark Applications |
219838100 |
Universal Product Code Database |
62604775 |
Universal Tagset |
37147 |
Universal Treebank |
119113962 |
University of Waterloo Student Demographics |
593234 |
University programs information of unis in Lahore |
83337 |
University Rankings |
186384 |
Unix Words |
2498552 |
unknown |
137160 |
Unkown Data |
45278227 |
Unofficial Holidays |
19245 |
unsafe urls |
245079491 |
unsample |
409326773 |
unsample_2 |
409110512 |
unstemed |
1427 |
unzip_tsv |
196737128 |
Unzipped |
2 |
unzipped data |
514507530 |
Unzipped file |
4933794 |
Unzipped Oil csv |
20580 |
unzipped-raw |
78025130 |
UPC_creditcard_default-payment |
2862995 |
update dataset |
28879944 |
updated |
93723293 |
updatedata |
90249030 |
upload |
7463819 |
upload_pred |
16659614 |
UploadedData |
2161900092 |
uploadtest |
15570 |
Urban and Rural Photos |
3272392 |
Urban Dictionary Terms |
1099750 |
Urban Dictionary Words And Definitions |
249154499 |
urban land cover/testing |
412022 |
Urdu Speech Dataset |
41464533 |
Urdu Stopwords List |
11674 |
Urdu-Nepali Parallel Corpus |
6285620 |
URL Database |
255803 |
US ACS Financial Hedging Features |
5398411 |
US Adult Income |
5977458 |
US Baby Names |
181758519 |
US campsites |
8831764 |
US Candy Production by Month |
10740 |
US Casualties of the Korean War |
7085940 |
US Casualties of the Vietnam War |
25328211 |
US Census Bureau County Data 1980-1990 |
881066 |
US Census Demographic Data |
5903488 |
US Census Population Data (County Level) 1970-2014 |
2518181 |
US Chronic Disease Indicators |
122899180 |
US College Sailing Results |
86621612 |
US Consumer Finance Complaints |
378460129 |
US County Info with smoking ban |
3984620 |
US County Premature Mortality Rate |
361394 |
US county-level mortality |
25052207 |
US Demographics |
623 |
US Dept of Education: College Scorecard |
4201314992 |
US DOT Large Truck and Bus Crash Data |
4220 |
US Energy Statistics |
955567524 |
US Facility-Level Air Pollution (2010-2014) |
6462128 |
US Flight Delay |
412132322 |
US Gross Rent ACS Statistics |
5724068 |
US Household Income Statistics |
5857882 |
US Input-Output Tables |
1624770 |
US jobs on Monster.com |
68388810 |
US Mass Shootings |
138231 |
US Mass Shootings |
695203 |
US Mass Shootings Dataset v2 Clean |
138506 |
US Mass Shootings NaN coordinates fixed |
153656 |
US Metropolitan population density 2016 |
24928 |
US Permanent Visa Applications |
298624850 |
US Population By Zip Code |
117755673 |
US President Campaign Spending |
3200 |
US Presidential Elections 10 States Comparison |
1003 |
US PRESIDENTS |
6179 |
US Presidents heights: How low can u go? |
1008 |
US regions |
1779 |
US Representation by Zip Code |
239200351 |
US state county name & codes |
127459 |
US States - Cartographic Boundary Shapefiles |
8506126 |
US Stocks Fundamentals (XBRL) |
151728124 |
US Supreme Court Cases, 1946-2016 |
2642816 |
US Tariff Rates |
9083109 |
US tourism |
208 |
US Trademark Case Files, 1870-2016 |
4440647001 |
US Traffic Violations - Montgomery County Police |
367888303 |
US Traffic, 2015 |
467378913 |
US Unemployment Rate by County, 1990-2016 |
80447850 |
US Veteran Suicides |
59031 |
US zip codes with lat and long |
928044 |
US_Industrial_Prodcution |
11086 |
US-based job data set from 300+ companies |
73499355 |
US-based Jobs from Dice.com |
17302872 |
us-states |
87739 |
USA HOUSE PRICES |
726209 |
USA Housing |
726209 |
USA Housing dataset |
915002 |
USA Income Tax Data by ZIP Code, 2014 |
167426476 |
USA lat,long for state abbreviations |
1885 |
USA Map Shape |
2360011 |
USA PollingData |
4081 |
USA Unemployment Rate from 1989 to 2017 |
1618 |
USA_Housing |
726209 |
USA_Housing.csv |
726209 |
Usable Oil Prices: Simple Price Imputation |
142793 |
usagov |
1833108 |
uscrimes |
5107 |
USD Vs INR in past 10 year |
293 |
USDA plant database |
2282563 |
USDA PLANTS Checklist |
6780700 |
useBySELF |
3087508 |
Used car offers |
33157763 |
Used cars database |
68541275 |
Used CARS retailer in US database |
1288198 |
User Information |
119535551 |
User Ratings for Movies |
3989514 |
user_logs_filtrados |
119767170 |
userdata |
1529669 |
userlog file |
435478250 |
userlogs |
18795855 |
Users data |
991 |
Users mobile banking transaction frequency |
317818 |
USHousingData_PricePrediction |
2337942 |
USP_lie_to_me |
888391 |
Uttar Pradesh Assembly Elections 2017 |
298535 |
uuiuvc |
460 |
UZ_vagon |
7590534 |
v2 Church Inventory |
18678 |
v2aug24 |
4614238 |
V2PizzaData |
318851 |
v81 Mercari restored brand names |
17415182 |
Vacation rental properties in Palm Springs, CA |
21565117 |
Vader Lexicon |
434147 |
validdatacv5 |
4871570 |
variability in the poverty rate in the US counties |
3889674 |
VAT thermal |
5 |
Vatalu |
8782 |
Vectorized Handwritten Digits |
105298 |
Vegetarian & Vegan Restaurants |
82666666 |
Vehicle and Tire Recalls, 1967-Present |
19594636 |
Vehicle Collisions in NYC, 2015-Present |
89553269 |
Vehicle Fuel Economy |
18001687 |
Vehicle Fuel Economy Estimates, 1984-2017 |
11731914 |
Vehicle Movements Datasets |
14256788 |
Vehicles - Nepal |
24607221 |
Vehicles Colombia (Fasecolda) |
3446067 |
Venues in New York City |
1781262 |
VerbNet |
2474526 |
Version_2 |
340861583 |
version23 |
3074296 |
very small test data |
10 |
Vgg__19 |
7377 |
vgg_bestmodel |
184459 |
VGG-11 |
493415465 |
VGG-11 with batch normalization |
493733956 |
VGG-13 |
494116563 |
VGG-13 with batch normalization |
494374395 |
VGG-16 |
513596671 |
VGG-16 |
568494657 |
VGG-16 weights |
54730390 |
VGG-16 with batch normalization |
514090234 |
VGG-19 |
533106572 |
VGG-19 |
608022600 |
VGG-19 with batch normalization |
534106491 |
VGG16 imagenet model |
58889256 |
VGG16_Keras |
58889256 |
VGG16_npy |
514146600 |
vgg16_weights |
54730390 |
vgg16_weights |
58889256 |
vgg16_weights_tf |
58889256 |
vgg166finetune |
59377447 |
vgg16wgts |
54730390 |
vgsaleeeeee |
357308 |
vgsales |
364519 |
vgsales.csv |
391429 |
vgsales2.csv |
390187 |
victoire |
7535648 |
victor_kagglemix |
10086186 |
Video Game Sales |
1355781 |
Video Game Sales and Ratings |
1515957 |
Video Game Sales with Ratings |
1618040 |
Video_Games_Sales_as_at_22_Dec_2016.csv |
1618040 |
VideoGameSales |
390246 |
Vietnam War Bombing Operations |
1625116690 |
Viewing Solar Flares |
1595094 |
vijaytta |
89823 |
Vincent van Gogh's paintings |
122355 |
vinos y crimenes |
1349 |
virginie_do |
2387182 |
Virtual Reality Driving Simulator Dataset |
29739136 |
virugadde |
133490 |
Visa Free Travel by Citizenship, 2016 |
4699 |
Visitors data of facebook movie fan group kinofan |
1249917 |
visualisation.py |
2287 |
visualization |
16400 |
Visualization_Tests |
282 |
visualizations |
201851 |
VIX2017 |
9189 |
vizualizations |
201851 |
vocabfile |
1716265 |
vocimages |
1294820 |
voice and speech |
415116 |
Voice Data Recognition |
415116 |
Voice Recognition |
746155 |
voice_gender_prediction |
415116 |
Volcanic Eruptions in the Holocene Period |
259712 |
voting data of congressmen for various bills(1980) |
19818 |
VOTP Dataset |
296543330 |
Vowpal Wabbit tutorial |
93691305 |
VR games list |
20455 |
Vselection |
270 |
VXXData |
4620 |
w245ertrgdfgewrt |
1635878 |
w2v_tutorial_data |
27649993 |
w2v_tutorial_data_labelled |
13788274 |
Wage Estimates |
62865165 |
Wages Dataset |
62250 |
wallmart sales forecast datasets |
3937026 |
walmart |
4210412 |
Walmart Data |
869537 |
Walmart Sales |
1397246 |
Walmart_files |
4210412 |
War_and_Peace |
610926 |
Wars by death tolls |
9328 |
warwar |
610926 |
Water Conservation Supplier Compliance |
42080 |
Water Consumption in a Median Size City |
47122790 |
Water Levels in Venezia, Italia |
12621914 |
water pump |
26233863 |
waterimage |
942965 |
WDPA_Nov2017 |
9705377 |
wearable motion sensors |
427319 |
Weather |
7927 |
Weather |
262144000 |
WEATHER ANALYSIS |
79935 |
Weather Conditions in World War Two |
11246918 |
Weather Data - Boston (Jul 2012 - Aug 2015) |
30649 |
Weather Data for Recruit Restaurant Competition |
11851553 |
Weather data in New York City - 2016 |
11147 |
Weather Dataset |
2342515 |
Weather DataSet for RV Challenge |
181835 |
Weather dataset from the R rattle package |
4140278 |
Weather datasets |
533144 |
Weather in Szeged 2006-2016 |
16294377 |
Weather Madrid 1997 - 2015 |
528914 |
Weather Modified |
226234 |
Weather on terrorism |
37725880 |
Weather Undergroud |
7927 |
Weather Underground |
7927 |
weather_data_perMinute |
27425604 |
weather-data |
171621 |
weather.csv |
29462 |
Web crawler for real estate market |
349166 |
Web Text Corpus |
1726918 |
Web Traffic Time Series Forecasting |
40689209 |
Web visitor interests |
3123645 |
Webster 2009 |
57936 |
weekly |
28890 |
Weekly Corn Price |
20178 |
Weekly Dairy Product Prices |
357629 |
Weekly Gold Close Price 2015-2017 |
8134 |
Weekly Return Data of Nifty, Gold and Oil |
36987 |
Weekly Sales Transactions |
317399 |
weekly2 |
36895 |
WEFEFFFFFFFFFFFFFS |
187487694 |
wefwefwefwefwef |
2311143 |
weightavg |
1251231 |
Weights |
175313142 |
weights |
54730390 |
Weights |
28367863 |
Weights |
79592 |
weights |
64553152 |
weights |
1888776 |
weights |
7603 |
Weights for ResNet50 for this competition |
274819726 |
weights2e |
22857356 |
Weigths |
79592 |
Weizmann HAR |
335582657 |
Weka German Credit |
139018 |
Welfare Error Rates |
4261 |
wh_ensemble |
2435093 |
wh_ensemble11 |
2435093 |
wh_ensemble12 |
1940007 |
whaledetection-ng |
721212 |
whaledetection-rg |
720686 |
What is a note? |
14698728 |
What people purchase |
203510 |
What.CD Hip Hop |
10727424 |
What's On The Menu? |
152680773 |
whatsappchat |
5006 |
WhatsAppGroupChat |
5006 |
When do children learn words? |
78657 |
Where it Pays to Attend College |
74222 |
Where's Waldo |
131409856 |
White House Salaries |
397813 |
whitebelt |
708633 |
WHO data |
16400 |
WHO dataset just for fun |
16400 |
Who Dies? Physics Puzzle Dataset |
382271757 |
Who eats the food we grow? |
894612 |
WHO Insufficiently active |
25167 |
Who starts and who debunks rumors |
9619509 |
Who's the Boss? People with Significant Control |
3474121431 |
Whole Foods |
64214 |
whycannotupdate |
6298003 |
Wiki Words |
949663 |
WIKI_OUT |
17083327 |
wiki-mitx |
435355 |
wiki-news-300d-1M.vec |
689870086 |
Wikidata Property Ranking |
393784 |
Wikipedia |
435355 |
Wikipedia Article Titles |
310654639 |
Wikipedia country population, currencies |
22747 |
Wikipedia Edits |
121089 |
wikitext-2 |
4783336 |
wild-fire |
8370931 |
winapps-challenge |
427291 |
Wind data |
13509 |
Wind Farms |
12911849 |
Wind Predictions |
138090 |
wind_data5 |
12584 |
winddata |
539150 |
Wine Dataset |
1170 |
Wine dataset - Unsupervised Algorithms |
10782 |
Wine Industry |
1440098 |
Wine Quality |
391892 |
wine quality selection |
355068 |
Wine Reviews |
53336217 |
wine_data.csv |
10958 |
Winedataqualitypractice |
231073 |
WineDataset |
11304 |
WineDataset |
1040 |
WineDatasetHeaders |
11480 |
Winemagazine_IE_students |
17330448 |
winequality-red |
84199 |
winequality-red |
84199 |
winequality-red |
84199 |
wines_properties |
11462 |
WIP DATASET TBC |
7980 |
wiscbcdata |
125093 |
Wisconsin Breast Cancer Database |
20057 |
With coordinates |
3680819 |
withalldummies |
7233614 |
withdtiratio |
4080912 |
without dummy |
4187788 |
withratio |
6071712 |
WL-DubDub |
11 |
WMO Hurricane Survival Dataset |
974161 |
WMT15 Evaluation |
1247631 |
WNBA Player stats Season 2016-2017 |
20793 |
Woebot Responses |
43798 |
Women and Child Model |
3589 |
Women Shoes |
7441975 |
Women's Shoe Prices |
107048266 |
Women's Tennis Association Matches |
9277027 |
Wonderland |
3325833 |
Woodbine Horse Racing Results |
1392158 |
Word clouds |
103808 |
Word Hypernyms |
31575 |
Word in French |
25851677 |
Word Occurrences in Movies |
1388438 |
Word Occurrences in Mr. Robot |
322208 |
Word Occurrences in Shakespeare |
404735 |
word vector |
39746350 |
word vector 2 |
31407499 |
Word vector test questions |
603955 |
word_cloud_picture |
30788 |
word-cloud-picture |
30788 |
Word2Vec |
14971180 |
Word2Vec |
135847466 |
Word2vec |
67281491 |
Word2Vec Google |
1760925994 |
word2vec model |
1760925994 |
Word2Vec Sample |
138432415 |
Word2Vec tutorial - Suite |
133845411 |
word2vec_Google |
1760925994 |
word2vec_model |
1760925994 |
wordbatch |
2243245 |
wordbatch |
2243245 |
wordbatch |
603397 |
wordbatch |
2243245 |
wordbatch |
2254833 |
wordbatch |
2243245 |
wordbatch |
2254833 |
wordbatch |
2243245 |
WordBatch |
2246473 |
wordbatch |
2243245 |
wordcloud |
257461 |
Wordgame |
8630880 |
WordNet |
70574350 |
words_recognition |
3411890296 |
workbatch |
2243245 |
workbook1 |
21274 |
Workers Browser Activity in CrowdFlower Tasks |
10759715 |
Working rate |
922 |
working with code quality metrics |
93723293 |
working_blend |
7976972 |
working_blend_2 |
7976236 |
working_blend_3 |
7977044 |
World Atlas of Language Structures |
13493201 |
World Bank : World Development Index |
44701 |
World Bank Youth Unemployment Rates |
17145 |
World Bank:World Develpment Index DataSet |
44701 |
World Bank's Major Contracts |
53817900 |
World Cities |
872568 |
World Cities Database |
164327399 |
World Cities Population and Location |
5793670 |
World Color Survey |
12129809 |
World Continent-Country Codes |
5224 |
World Countries and Continents Details |
48076 |
World Countrywise Population Data 1980 - 2010 |
59344 |
World Demographics |
634880 |
World Development Indicators |
245856498 |
World Development Indicators |
2042307823 |
World Factbook Country Profiles |
6973424 |
World Flags |
254068 |
World Gender Statistics |
80188494 |
World Glacier Inventory |
17249601 |
World happiness |
17132 |
World Happiness Analysis |
29530 |
World Happiness Excercise |
7196 |
world happiness report |
22743 |
World Happiness Report |
63225 |
World Language Family Map |
207749813 |
World of Warcraft Avatar History |
643669597 |
World of Warcraft Demographics |
13622 |
World Population |
134321 |
World Population |
1344962 |
World Population |
287706 |
World Population Historical (Predictive) |
6584 |
World Population Predictions |
707668 |
World Soccer - archive of soccer results and odds |
14620926 |
World Tennis Odds Database |
51572422 |
World university rankings |
186384 |
World University Rankings |
11999397 |
World War 2 Weather Dataset |
21648 |
World´s largest economies |
724 |
world_countries |
252692 |
World_Happiness Report_2017 |
29536 |
World_Happiness_Madhavi |
7196 |
world-cities |
872568 |
world-countries |
252515 |
world-countries.json |
252515 |
World's Highest Mountains |
13009 |
worldcountries |
252504 |
Worldnews on Reddit from 2008 to Today |
82161571 |
WorldPopulation |
134321 |
Worldwide Economic Remittances |
515524 |
WOW air tours as of 2018 |
5867516 |
wrod2vec_twitter_50d |
214231913 |
wrod2vec-twitter-25d |
112330277 |
wsdm data |
235891409 |
wsdm lgbm |
246043422 |
wsdm test |
608805921 |
WSDM_KKBOX |
737403492 |
WSDM-Music |
740949351 |
WTA Matches and Rankings |
20720193 |
wu-ensemble11 |
2531038 |
WUZZUF Job Posts (2014-2016) |
137386426 |
WWI Bombing Operations |
1422071 |
wwrtrgfnvbhgv |
28627 |
wwwwww |
4072076 |
wwwwww |
2245108 |
wwwwwwwww |
14291742 |
Wyckford Basic |
4865 |
x_train |
54225842 |
x_val_re |
8981920 |
x-test |
8952997 |
Xception |
162488266 |
XG_Contour |
247223 |
XGB Submit |
14511189 |
xgb_30011 |
662096 |
xgb_lgb_best |
5898826 |
xgb_model |
342531 |
xgb_submission |
6273722 |
xgb_submission |
13618373 |
xgb_submit |
6273722 |
xgb_submit |
14511189 |
xgb_support_CFav |
16960582 |
xgb_valid_preds_public |
3398480 |
xgb.fmap |
356 |
xgbname |
7519435 |
xgbname2 |
5739462 |
xgboost_yisu |
7493399 |
xgboost-practice |
4304184 |
xgboost1 |
1584533 |
XGboostCVLB284 |
11028 |
xgbost32 |
7291826 |
XGBPlus |
9834641 |
xiangku |
44234355 |
xinjiang(Predictive Maintenance) |
88790835 |
XOM_txt |
4586 |
XOM_Txt2 |
4857 |
XOMData |
4857 |
XRP and BTC |
1108006 |
<"xss'asdasd |
8 |
Xtrain |
70000519 |
xxtestonq |
763156 |
XXX Housing Data |
18853 |
XXXPropertyData |
4844 |
Y Combinator Companies |
125369 |
Y prédictions |
892434 |
y_train |
16683740 |
y_val_re |
2776283 |
YCOE Corpus |
277 |
Year vs Number of emails - Enron Emails |
9697 |
Years of experience and Salary dataset |
454 |
Yellow Pages of Pakistan |
8970140 |
yelp data for natural language processing |
3656621 |
Yelp Reviews |
68806 |
Yelp Reviews 1000 |
759135 |
yelp_review |
3656621 |
Yelp-100000-reviews |
30821961 |
yelp-review-tail-1000 |
773722 |
yolo_model |
189265019 |
Young People Survey |
458740 |
YouTube Comedy Slam |
33607350 |
YouTube Faces With Facial Keypoints |
10510217344 |
Youtube SPAM CLASSIFIED-COMMENTS |
341738 |
Yucata Season 1 Raw Data |
37024 |
yytutu |
15991536 |
Zapatos |
7441975 |
zetasantagiftscore |
4042518 |
zhaibowen_1 |
7265181 |
zhaibowen_10 |
7276229 |
zhaibowen_11 |
7272112 |
zhaibowen_11 |
7276369 |
zhaibowen_1229_1 |
7270411 |
zhaibowen_171228_1 |
7266182 |
zhaibowen_171231_1 |
7278103 |
zhaibowen_180107_4 |
7266292 |
zhaibowen_180108_1 |
7977768 |
zhaibowen_180108_2 |
7979616 |
zhaibowen_180112 |
7981135 |
zhaibowen_180116 |
7981289 |
zhaibowen_2 |
7277005 |
zhaibowen_3 |
7277005 |
zhaibowen_4 |
7279277 |
zhaibowen_5 |
7279622 |
zhaibowen_6 |
7277005 |
zhaibowen_7 |
7276252 |
zhaibowen_8 |
7275371 |
zhaibowen_9 |
7273349 |
Zika Virus Epidemic |
11662539 |
zillow |
18652182 |
zillow |
35494318 |
Zillow Economics Data |
527680809 |
Zillow Rent Index, 2010-Present |
10725975 |
zillowzestimate_original_IMPUTED_BY_JB_2.4.csv |
35494318 |
Zip Codes and Stats |
945774 |
ZIPfiles |
554536109 |
ZKIT ORG |
30208 |
zombie |
684186 |
zoningpolygon |
2293495 |
Zoo Animal Classification |
5331 |
"Zwarte Piet" Tweets |
1949268 |
ZwidosTweets |
28043 |
zzself |
34574009 |
|
31802982 |
|
566778 |
|
199587 |
|
346 |
King County data |
874920 |
King County |
861852 |
|
1433727 |
taiwan data |
7837 |
|
566778 |
:: Job |
3989247 |
|
61627 |
********* |
7313709 |
|
20545475 |
|
9217261 |
...... |
29953584 |
0.1400 |
206347 |
0.609034_0.608800_submission |
7412065 |
0.85933376.csv |
4082718 |
0.9336273678.csv |
4071836 |
01-train |
156 |
01040123 |
7374315 |
0105nn1000hl3hl |
82671011 |
0623-goodsprice |
1846250 |
081617 |
202743 |
0a7c2a8d_nohash_0.wav |
32044 |
0b443cc3ab8dabf57b37cb8d9879107cc54efd989 |
6830160 |
1 M+ Real Time stock market data [NSE/BSE] |
221599816 |
1 million Sudoku games |
164000018 |
1.2 Million Used Car Listings |
146679503 |
1.6M accidents & traffic flow over 16 years |
651439827 |
1.88 Million US Wildfires |
795785216 |
10_sub_for_ensemble |
2283447 |
100,000 Random Internet Domain Names |
1799672 |
1000 Camera Specs |
87053 |
1000 Cameras Dataset |
86961 |
1000 Cameras Dataset(Source:Kaggle) |
86961 |
1000 Genome Data for Complete Beginners |
277313 |
1000 Netflix Shows |
89054 |
1000 parallel sentences |
276751 |
1000 sentences Canadian parliament |
231295 |
100K Coursera's Course Reviews Dataset |
40792183 |
101 Innovations - Research Tools Survey |
28569675 |
111111 |
7365405 |
120 Million Word Spanish Corpus |
677861666 |
12306 captcha image |
97558955 |
123123 |
7316122 |
123124 |
7392318 |
123125 |
7442329 |
123126 |
7469538 |
123456 |
3073 |
125,000 Reddit Comments about Diabetes |
64439505 |
13,000 Screen Capture Images + How to Get More |
522472158 |
15BCE1012_lab_6 |
1340922 |
15BCE1012_lab6_DV |
1207668 |
15BCE1066_Lab6_data_Visualization |
1340922 |
15bce1287_lab_6 |
1340922 |
15BCE1376_lab6 |
1340922 |
1617_boxscore_edited_wl_ha |
333106 |
17 Years of Resident Advisor Reviews |
15266902 |
1718_boxscore_wl_ha |
358662 |
18 y/o weight-height records |
47778 |
18,393 Pitchfork Reviews |
83585024 |
180106_subm_1 |
4082820 |
180109_sub_1 |
4044923 |
180111_01 |
8071105 |
183,000+ Reddit Comments about Trump |
40099599 |
18th SAARC Tweets |
17129676 |
1data wrewrw |
89823 |
1k Pharmaceutical Pill Image Dataset |
8414289 |
1millionfile |
24899807 |
1st Submission |
8071237 |
1stsubmit |
7257447 |
1weigts |
2943944 |
1xgboost |
8652358 |
1YearTrainingData |
19261 |
2 Class Classification |
12035 |
2_combo_EDA_Output.csv |
221340 |
20 by median rank LB .285 script |
24706923 |
20 Newsgroups |
72078077 |
20 Years of Games |
2019628 |
2010 Austin weather |
254046 |
2010 US Census data |
11452992 |
2011 - 2013 NYC Traffic Volume Counts |
1436453 |
2011 NOAA Austin Climate |
236109 |
2012 and 2016 Presidential Elections |
3381885 |
2012 Election- Obama vs Romney |
158033839 |
2013 American Community Survey |
4203827010 |
2013-2014 Seoul Metropolitan Region Weather |
402307 |
2014 ACS Dashboard |
34483689 |
2014 American Community Survey |
3082677840 |
2014 New York City Taxi Trips |
512755993 |
2014 Public Libraries Survey |
3549121 |
2014 UN COMTRADE DATA |
177943062 |
2014 World Cup Forecasts and Scores |
285453 |
2014&2017 Bandung Public Transportation Data |
9755 |
2014nbaplayers |
82076 |
2015 American Community Survey |
4313602552 |
2015 Canadian General Election results |
42286565 |
2015 Flight Delays and Cancellations |
592430817 |
2015 Global Open Data Index |
262911 |
2015 LAPD Calls For Service |
58568183 |
2015 Notebook UX Survey |
766065 |
2015 NYC Taxi Trips |
278000672 |
2015 Reddit Comments |
7610868 |
2015 Traffic Fatalities |
92018865 |
2015 US County-Level Population Estimates |
2204609 |
2015 US Traffic Fatalities |
9233282 |
2015-16-premier-league |
456 |
2016 Advanced Placement Exam Scores |
25797 |
2016 and 2017 Kitefoil Race Results |
392687 |
2016 Congress Votes |
47687 |
2016 Election Polls |
3097615 |
2016 EU Referendum in the United Kingdom |
118579 |
2016 Global Ecological Footprint |
22560 |
2016 Jan-June NYC Weather, hourly |
348557 |
2016 March ML Mania Predictions |
28731852 |
2016 New Coder Survey |
10079792 |
2016 NYC Real Time Traffic Speed Data Feed |
721872569 |
2016 Olympics in Rio de Janeiro |
794050 |
2016 Parties in New York |
55830594 |
2016 Presidential Campaign Finance |
9216805 |
2016 U.S. Presidential Campaign Texts and Polls |
1782759 |
2016 U.S. Presidential Election Memes |
27375544 |
2016 US Election |
50164290 |
2016 US Presidential Debates |
375078 |
2016 US Presidential Election Vote By County |
1682243 |
2016 US Presidential Primary Debates |
4317145 |
2016 VOTER Survey Data Set |
62584572 |
2017 #Oscars Tweets |
16925495 |
2017 census data for 4chan's fitness board |
118761 |
2017 Conservative Party of Canada Leadership |
1902750 |
2017 Iditarod Trail Sled Dog Race |
141881 |
2017 Index of economic freedom |
28069 |
2017 March ML Mania Predictions |
27699297 |
2017 March ML Mania Processed Predictions |
93073830 |
2017 Military Strength Ranking |
60594 |
2017 State Assembly Election Results |
842328 |
2017_07_18-14_10_38_bioharness |
2513688 |
2017_2c_OrgDatos_TP1AnalisisExploratorio |
244627734 |
2017_X |
29530 |
2017-10-20 |
230978 |
2017-10-20-BCHARTS-KRAKENUSD |
113807 |
2017-12-27-Leaderboard Corporacion Favorita |
330254 |
2017.CSV |
24139 |
20170110 |
4044961 |
20171219_1 |
7258872 |
20171226 |
1420 |
20171227 |
29061 |
20180104 |
7369884 |
201801041655 |
14712605 |
20180111102200 |
16149782 |
20180111153101 |
7367735 |
20180111153101 |
24219783 |
20180112181420 |
16139459 |
20180113073044 |
16670587 |
20180113073715 |
16136616 |
20180113075700 |
16136892 |
20180113153630 |
8069270 |
20180113155355 |
8069747 |
20180113155918 |
8069994 |
20180113161850 |
9321763 |
20180113163013 |
9321763 |
20180113165846 |
2434243 |
20180114000000 |
13156476 |
20180114190121 |
16139215 |
20180116083816 |
8071716 |
20180116103132 |
9594150 |
20180116103133 |
8067964 |
20k Tweets Relating to #JerusalemEmbassy |
1155425 |
222222 |
7372219 |
23333 |
439 |
236365 |
31887 |
24 thousand tweets later |
3697735 |
24102017_sf |
18167 |
24102017ds_fs |
18167 |
24500 plane routes |
238249 |
273_project |
140401069 |
2D_example |
421 |
2epochs |
22857356 |
2nd Submission |
8069950 |
2sigma |
580023307 |
2st Submission |
8069950 |
2YearDataAnalysisData |
38218 |
3 Million German Sentences |
400191072 |
3 models_HPfiltered_252x252 |
13313269 |
30 Years of European Solar Generation |
591041118 |
30 Years of European Wind Generation |
744718937 |
300600 |
56947062 |
300600_2 |
44234355 |
311 service requests NYC |
235458471 |
311_NYC_2011 |
30769335 |
311_Service_Requests_from_2010_to_Present |
1865950580 |
311_Service_Requests_from_2010_to_Present.csv.zip |
1695248161 |
350 000+ movies from themoviedb.org |
201485329 |
35000 car adv |
2808122 |
380,000+ lyrics from MetroLyrics |
324632382 |
3D MNIST |
255816956 |
3Happyscore |
65289 |
3mWindow |
585319 |
3rd Submission |
8069938 |
3rd_submit |
6298003 |
444444444 |
35045 |
4chan.org/pol forum posts with keyword Trump |
120786944 |
4dataset |
743301 |
5 Celebrity Faces Dataset |
2639585 |
5 Day Data Challenge: Day 1 |
5636539 |
5 Day Data Challenge: Day 1 |
87053 |
5 day data-challange day-1 |
7549 |
5 giorni Data Challenge: Day 4 |
5213 |
5_10_network |
8368 |
5-Day Data Challenge Sign-Up Survey Responses |
722715 |
5.1. Clientes-centro-comercial |
4339 |
50 Startups |
2436 |
50_100_network |
809692 |
50_Startups |
2436 |
500 Cities: Local Data for Better Health |
227806975 |
500 samples |
50842 |
5000_IMDB_Movies_Multivariant_Analysis |
1877207 |
50000_Songs_GRU |
4165976 |
508_HW1 |
626906 |
50words |
707 |
515K Hotel Reviews Data in Europe |
238154765 |
515k Reviews After Preprocessing |
63020578 |
52testingcrypt |
2326 |
55000+ Song Lyrics |
72436445 |
555555555 |
35045 |
57_features |
4434985 |
58 years of Temperature Data |
4479618 |
65 World Indexes |
123291 |
7_digit |
824 |
7ecb8f4fe2ece9f4c8ffd23af10c310f |
127264365 |
7k kitties |
23886292 |
80 Cereals |
5063 |
80 Cereals |
5157 |
80 Cereals: Nutrition data on 80 cereal products |
2258 |
801 Funny Images With Rating |
128752299 |
80cereal |
2258 |
80cereal.csv |
5063 |
888888 |
35045 |
8a.nu Climbing Logbook |
467013632 |
900_items |
184439926 |
911 Data |
1816 |
911.csv |
10196426 |
99 acres Housing details |
44502 |
A 6-figure prize by soccer prediction (Live Feed) |
17879235 |
A Benchmark Data for Turkish Text Categorization |
3503109 |
a dataset test |
315047004 |
A millennium of macroeconomic data |
25937595 |
A Million News Headlines |
19469752 |
A Million Pseudo-Random Digits |
2000031 |
A Pickle of unique words from Quoras Data |
1090513 |
A plume |
271744 |
A Recruiter Year in Review! |
295819 |
A Tribuna |
140405644 |
A Visual and Intuitive Train-Test Pattern |
1016222 |
A Year of Pumpkin Prices |
188088 |
A-Z Handwritten Alphabets in .csv format |
85236774 |
A1-Burtin |
752 |
A102 Big Mart |
1397246 |
A102 DATASET |
1395830 |
A102 project |
1397246 |
aaaaaa |
4044907 |
aa102data |
1395830 |
aaaaaa |
1857825 |
aaaaaa |
1263743 |
aaaaaa |
3172 |
a102data |
1397246 |
aaData |
164579 |
aaaaaa |
61194 |
aadasdasdasd |
28735 |
aaaaaa |
460 |
aadhaar |
11817671 |
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa |
3218780 |
aaaaaaaa |
134368 |
aaaaaaaaaaaa |
1737535 |